
Introduction to OpenACC

John Urbanic
Parallel Computing Specialist

Pittsburgh Supercomputing Center

Copyright 2015

What is OpenACC?

It is a directive based standard to allow developers to

take advantage of accelerators such as GPUs from

NVIDIA and AMD, Intel's Xeon Phi, FPGAs, and even DSP

chips.

Directives

Program myscience

 ... serial code ...

!$acc kernels

 do k = 1,n1

 do i = 1,n2

 ... parallel code ...

 enddo

 enddo

!$acc end kernels

 ...

End Program myscience

CPU GPU

Your original

Fortran or C code

OpenACC

Compiler

Hint

Simple compiler hints from coder.

Compiler generates parallel

threaded code.

Ignorant compiler just sees some

comments.

Familiar to OpenMP Programmers

main() {

 double pi = 0.0; long i;

 #pragma omp parallel for reduction(+:pi)

 for (i=0; i<N; i++)

 {

 double t = (double)((i+0.05)/N);

 pi += 4.0/(1.0+t*t);

 }

 printf(“pi = %f\n”, pi/N);

}

CPU

OpenMP

main() {

 double pi = 0.0; long i;

 #pragma acc kernels

 for (i=0; i<N; i++)

 {

 double t = (double)((i+0.05)/N);

 pi += 4.0/(1.0+t*t);

 }

printf(“pi = %f\n”, pi/N);

}

CPU GPU

OpenACC

More on this later!

How Else Would We Accelerate Applications?

Applications

Libraries

“Drop-in”

Acceleration

Programming

Languages

(CUDA)

OpenACC

Directives

Maximum

Flexibility

Incrementally

Accelerate

Applications

Key Advantages Of This Approach

High-level. No involvement of OpenCL, CUDA, etc.

Single source. No forking off a separate GPU code. Compile the same program for

accelerators or serial, non-GPU programmers can play along.

Efficient. Experience shows very favorable comparison to low-level implementations

of same algorithms.

Performance portable. Supports GPU accelerators and co-processors from multiple

vendors, current and future versions.

Incremental. Developers can port and tune parts of their application as resources

and profiling dictates. No wholesale rewrite required. Which can be quick.

A Few Cases
Reading DNA nucleotide sequences

Shanghai JiaoTong University

Designing circuits for quantum
computing

UIST, Macedonia

Extracting image features in real-
time

Aselsan

1 week

40x faster

3 directives

4.1x faster

HydroC- Galaxy Formation

PRACE Benchmark Code, CAPS

Real-time Derivative Valuation

Opel Blue, Ltd

Matrix Matrix Multiply

Independent Research
Scientist

Few hours

70x faster

4 directives

6.4x faster

4 directives

16x faster

1 week

3x faster

A Champion Case

S3D: Fuel Combustion

Design alternative fuels with
up to 50% higher efficiency Titan

10 days

Jaguar

42 days

Modified <1%
Lines of Code

4x Faster

15 PF! One of fastest

simulations ever!

Comparison to Alternatives
Lattice-Boltzmann Example

Broad Accelerator Support

Xeon Phi support already in CAPS. Demonstrated and soon to be release for PGI.

AMD line of accelerated processing units (APUs) as well as the AMD line of

discrete GPUs for preliminary PGI support.

Carma – a hybrid platform based on ARM Cortex-A9 quad core and an NVIDIA

Quadro® 1000M GPU.

NVIDIA…

NVIDIA Rules

or writes the rules. They have been the foremost supporter of GPU computing for

much of the past decade, and have earned the focus of this workshop. We are

using NVIDIA GPUs as our platform and our touchstone because:

 They are proven

 Well understood

 Best bang for buck if you want to buy an accelerator

 Excellent support by vendor and community

 It is the basis for our leading edge platform, Keeneland

 It will not be going obsolete any time soon

 NVIDIA recently acquired PGI. That gave us a slight preference for the

 PGI compiler over the Cray one. Both are available on Blue Waters.

True Standard

Full OpenACC 1.0 and 2.0 Specifications available online

http://www.openacc-standard.org

Quick reference card also available

Implementations available now from PGI, Cray, and CAPS.

GCC version of OpenACC in 4.9x and standard in 5.0 (official release

early April).

subroutine saxpy(n, a, x, y)
 real :: x(:), y(:), a
 integer :: n, i
!$acc kernels
 do i=1,n
 y(i) = a*x(i)+y(i)
 enddo
!$acc end kernels
end subroutine saxpy

...
$ From main program
$ call SAXPY on 1M elements
call saxpy(2**20, 2.0, x_d, y_d)
...

void saxpy(int n,

 float a,

 float *x,

 float *restrict y)

{

#pragma acc kernels

 for (int i = 0; i < n; ++i)

 y[i] = a*x[i] + y[i];

}

...

// Somewhere in main

// call SAXPY on 1M elements

saxpy(1<<20, 2.0, x, y);

...

A Simple Example: SAXPY

SAXPY in C SAXPY in Fortran

kernels: Our first OpenACC Directive

We request that each loop execute as a separate kernel on the GPU.

This is an incredibly powerful directive.

!$acc kernels

 do i=1,n

 a(i) = 0.0

 b(i) = 1.0

 c(i) = 2.0

 end do

 do i=1,n

 a(i) = b(i) + c(i)

 end do

!$acc end kernels

kernel 1

kernel 2

Kernel:
A parallel routine to

run on the GPU

General Directive Syntax and Scope

Fortran

!$acc kernels [clause …]
 structured block
!$acc end kernels

C

#pragma acc kernels [clause …]
 {

 structured block

 }

I may indent the directives at the natural code indentation level for readability. It is a

common practice to always start them in the first column (ala #define/#ifdef). Either is fine

with C or Fortran 90 compilers.

Complete SAXPY Example Code

#include <stdlib.h>

void saxpy(int n,

 float a,

 float *x,

 float *restrict y)

{

#pragma acc kernels

for (int i = 0; i < n; ++i)

 y[i] = a * x[i] + y[i];

}

int main(int argc, char **argv)

{

 int N = 1<<20; // 1 million floats

 if (argc > 1)

 N = atoi(argv[1]);

 float *x = (float*)malloc(N * sizeof(float));

 float *y = (float*)malloc(N * sizeof(float));

 for (int i = 0; i < N; ++i) {

 x[i] = 2.0f;

 y[i] = 1.0f;

 }

 saxpy(N, 3.0f, x, y);

 return 0;

}

“I promise y is not aliased by

Anything else (esp. x)”
(more later)

Compile and Run

C: cc –acc -Minfo=accel saxpy.c

Fortran: ftn –acc -Minfo=accel saxpy.f90

Compiler Output

cc -acc -Minfo=accel saxpy.c

saxpy:

 8, Generating copyin(x[:n-1])

 Generating copy(y[:n-1])

 Generating compute capability 1.0 binary

 Generating compute capability 2.0 binary

 9, Loop is parallelizable

 Accelerator kernel generated

 9, #pragma acc loop worker, vector(256) /* blockIdx.x threadIdx.x */

 CC 1.0 : 4 registers; 52 shared, 4 constant, 0 local memory bytes; 100% occupancy

 CC 2.0 : 8 registers; 4 shared, 64 constant, 0 local memory bytes; 100% occupancy

Run: aprun –n1 a.out

Compare: Partial CUDA C SAXPY Code
Just the subroutine

__global__ void saxpy_kernel(float a, float* x, float* y, int n){

 int i;

 i = blockIdx.x*blockDim.x + threadIdx.x;

 if(i <= n) x[i] = a*x[i] + y[i];

}

void saxpy(float a, float* x, float* y, int n){

 float *xd, *yd;

 cudaMalloc((void**)&xd, n*sizeof(float));

 cudaMalloc((void**)&yd, n*sizeof(float)); cudaMemcpy(xd, x, n*sizeof(float),

 cudaMemcpyHostToDevice);

 cudaMemcpy(yd, y, n*sizeof(float),

 cudaMemcpyHostToDevice);

 saxpy_kernel<<< (n+31)/32, 32 >>>(a, xd, yd, n);

 cudaMemcpy(x, xd, n*sizeof(float),

 cudaMemcpyDeviceToHost);

 cudaFree(xd); cudaFree(yd);

}

Compare: Partial CUDA Fortran SAXPY Code
Just the subroutine

module kmod
 use cudafor
contains
 attributes(global) subroutine saxpy_kernel(A,X,Y,N)
 real(4), device :: A, X(N), Y(N)
 integer, value :: N
 integer :: i
 i = (blockidx%x-1)*blockdim%x + threadidx%x
 if(i <= N) X(i) = A*X(i) + Y(i)
 end subroutine
end module

 subroutine saxpy(A, X, Y, N)
 use kmod
 real(4) :: A, X(N), Y(N)
 integer :: N
 real(4), device, allocatable, dimension(:):: &
 Xd, Yd
 allocate(Xd(N), Yd(N))
 Xd = X(1:N)
 Yd = Y(1:N)
 call saxpy_kernel<<<(N+31)/32,32>>>(A, Xd, Yd, N)
 X(1:N) = Xd
 deallocate(Xd, Yd)
 end subroutine

Again: Complete SAXPY Example Code

#include <stdlib.h>

void saxpy(int n,

 float a,

 float *x,

 float *restrict y)

{

#pragma acc kernels

for (int i = 0; i < n; ++i)

 y[i] = a * x[i] + y[i];

}

int main(int argc, char **argv)

{

 int N = 1<<20; // 1 million floats

 if (argc > 1)

 N = atoi(argv[1]);

 float *x = (float*)malloc(N * sizeof(float));

 float *y = (float*)malloc(N * sizeof(float));

 for (int i = 0; i < N; ++i) {

 x[i] = 2.0f;

 y[i] = 1.0f;

 }

 saxpy(N, 3.0f, x, y);

 return 0;

}

Entire Subroutine

Main Code

Big Difference!

With CUDA, we changed the structure of the old code. Non-CUDA

programmers can’t understand new code. It is not even ANSI standard code.

We have separate sections for the host code, and the GPU code. Different flow

of code. Serial path now gone forever.

Where did these “32’s” and other mystery variables come from? This is a clue

that we have some hardware details to deal with here.

Exact same situation as assembly used to be. How much hand-assembled code

is still being written in HPC now that compilers have gotten so efficient?

This looks easy! Too easy…

If it is this simple, why don’t we just throw kernel in front of every loop?

Better yet, why doesn’t the compiler do this for me?

The answer is that there are two general issues that prevent the compiler from being

able to just automatically parallelize every loop.

Data Dependencies in Loops

Data Movement

The compiler needs your higher level perspective (in the form of directive hints) to

get correct results, and reasonable performance.

Data Dependencies

Most directive based parallelization consists of splitting up big do/for loops into

independent chunks that the many processors can work on simultaneously.

Take, for example, a simple for loop like this:

for(index=0, index<1000000,index++)

 Array[index] = 4 * Array[index];

When run on 1000 processors, it will execute something like this…

for(index=0, index<999,index++)

 Array[index] = 4*Array[index];

Processor

1

for(index=1000, index<1999,index++)

 Array[index] = 4*Array[index];

Processor

2

for(index=2000, index<2999,index++)

 Array[index] = 4*Array[index];

Processor

3

for(index=3000, index<3999,index++)

 Array[index] = 4*Array[index];

Processor

4

for(index=4000, index<4999,index++)

 Array[index] = 4*Array[index];

Processor

5 ….

No Data Dependency

Data Dependency

But what if the loops are not entirely independent?

Take, for example, a similar loop like this:

for(index=1, index<1000000,index++)

 Array[index] = 4 * Array[index] – Array[index-1];

This is perfectly valid serial code.

Data Dependency

Now Processor 2, in trying to calculate its first iteration…

for(index=1000, index<1999,index++)

 Array[1000] = 4 * Array[1000] – Array[999];

needs the result of Processor 1’s last iteration. If we want the correct (“same

as serial”) result, we need to wait until processor 1 finishes. Likewise for

processors 3, 4, …

Data Dependencies

That is a data dependency. If the compiler even suspects that there is a data

dependency, it will, for the sake of correctness, refuse to parallelize that loop.

 11, Loop carried dependence of 'Array' prevents parallelization

 Loop carried backward dependence of 'Array' prevents vectorization

As large, complex loops are quite common in HPC, especially around the most

important parts of your code, the compiler will often balk most when you most

need a kernel to be generated. What can you do?

Data Dependencies

Rearrange your code to make it more obvious to the compiler that there

is not really a data dependency.

Eliminate a real dependency by changing your code.

There is a common bag of tricks developed for this as this issue goes

back 40 years in HPC. Many are quite trivial to apply.

The compilers have gradually been learning these themselves.

Override the compiler’s judgment (independent clause) at the risk of

invalid results. Misuse of restrict has similar consequences.

C Detail: the restrict keyword

Standard C (as of C99).

Important for optimization of serial as well as OpenACC and OpenMP code.

Promise given by the programmer to the compiler for a pointer

 float *restrict ptr

Meaning: “for the lifetime of ptr, only it or a value directly derived from it (such as ptr + 1) will be

used to access the object to which it points”

Limits the effects of pointer aliasing

OpenACC compilers often require restrict to determine independence

Otherwise the compiler can’t parallelize loops that access ptr

Note: if programmer violates the declaration, behavior is undefined

Our Foundation Exercise: Laplace Solver

I’ve been using this for MPI, OpenMP and now OpenACC. It is a great simulation problem, not rigged for OpenACC.

In this most basic form, it solves the Laplace equation: 𝛁𝟐𝒇(𝒙, 𝒚) = 𝟎

The Laplace Equation applies to many physical problems, including:

Electrostatics

Fluid Flow

Temperature

For temperature, it is the Steady State Heat Equation:

Metal

Plate

Heating

Element

Initial Conditions Final Steady State

Metal

Plate

Exercise Foundation: Jacobi Iteration

The Laplace equation on a grid states that each grid point is the average of it’s

neighbors.

We can iteratively converge to that state by repeatedly computing new values at

each point from the average of neighboring points.

We just keep doing this until the difference from one pass to the next is small

enough for us to tolerate.

A(i,j) A(i+1,j) A(i-1,j)

A(i,j-1)

A(i+1,j)

𝐴𝑘+1 𝑖, 𝑗 =
𝐴𝑘(𝑖 − 1, 𝑗) + 𝐴𝑘 𝑖 + 1, 𝑗 + 𝐴𝑘 𝑖, 𝑗 − 1 + 𝐴𝑘 𝑖, 𝑗 + 1

4

Serial Code Implementation

for(i = 1; i <= ROWS; i++) {
 for(j = 1; j <= COLUMNS; j++) {
 Temperature[i][j] = 0.25 * (Temperature_last[i+1][j] + Temperature_last[i-1][j] +
 Temperature_last[i][j+1] + Temperature_last[i][j-1]);
 }
}

do j=1,columns
 do i=1,rows
 temperature(i,j)= 0.25 * (temperature_last(i+1,j)+temperature_last(i-1,j) + &
 temperature_last(i,j+1)+temperature_last(i,j-1))
 enddo
enddo

while (dt > MAX_TEMP_ERROR && iteration <= max_iterations) {

 for(i = 1; i <= ROWS; i++) {
 for(j = 1; j <= COLUMNS; j++) {
 Temperature[i][j] = 0.25 * (Temperature_last[i+1][j] + Temperature_last[i-1][j] +
 Temperature_last[i][j+1] + Temperature_last[i][j-1]);
 }
 }

 dt = 0.0;

 for(i = 1; i <= ROWS; i++){
 for(j = 1; j <= COLUMNS; j++){
 dt = fmax(fabs(Temperature[i][j]-Temperature_last[i][j]), dt);
 Temperature_last[i][j] = Temperature[i][j];
 }
 }

 if((iteration % 100) == 0) {
 track_progress(iteration);
 }

 iteration++;

}

Serial C Code (kernel)

Calculate

Update

temp

array and

find max

change

Output

Done?

void initialize(){

 int i,j;

 for(i = 0; i <= ROWS+1; i++){
 for (j = 0; j <= COLUMNS+1; j++){
 Temperature_last[i][j] = 0.0;
 }
 }

 // these boundary conditions never change throughout run

 // set left side to 0 and right to a linear increase
 for(i = 0; i <= ROWS+1; i++) {
 Temperature_last[i][0] = 0.0;
 Temperature_last[i][COLUMNS+1] = (100.0/ROWS)*i;
 }

 // set top to 0 and bottom to linear increase
 for(j = 0; j <= COLUMNS+1; j++) {
 Temperature_last[0][j] = 0.0;
 Temperature_last[ROWS+1][j] = (100.0/COLUMNS)*j;
 }
}

Serial C Code Subroutines

void track_progress(int iteration) {

 int i;

 printf("-- Iteration: %d --\n", iteration);
 for(i = ROWS-5; i <= ROWS; i++) {
 printf("[%d,%d]: %5.2f ", i, i,Temperature[i][i]);
 }
 printf("\n");
}

BCs could run from 0

to ROWS+1 or from 1

to ROWS. We chose

the former.

#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include <sys/time.h>

// size of plate
#define COLUMNS 1000
#define ROWS 1000

// largest permitted change in temp (This value takes about 3400 steps)
#define MAX_TEMP_ERROR 0.01

double Temperature[ROWS+2][COLUMNS+2]; // temperature grid
double Temperature_last[ROWS+2][COLUMNS+2]; // temperature grid from last iteration

// helper routines
void initialize();
void track_progress(int iter);

int main(int argc, char *argv[]) {

 int i, j; // grid indexes
 int max_iterations; // number of iterations
 int iteration=1; // current iteration
 double dt=100; // largest change in t
 struct timeval start_time, stop_time, elapsed_time; // timers

 printf("Maximum iterations [100-4000]?\n");
 scanf("%d", &max_iterations);

 gettimeofday(&start_time,NULL); // Unix timer

 initialize(); // initialize Temp_last including boundary conditions

 // do until error is minimal or until max steps
 while (dt > MAX_TEMP_ERROR && iteration <= max_iterations) {

 // main calculation: average my four neighbors
 for(i = 1; i <= ROWS; i++) {
 for(j = 1; j <= COLUMNS; j++) {
 Temperature[i][j] = 0.25 * (Temperature_last[i+1][j] + Temperature_last[i-1][j] +
 Temperature_last[i][j+1] + Temperature_last[i][j-1]);
 }
 }

 dt = 0.0; // reset largest temperature change

 // copy grid to old grid for next iteration and find latest dt
 for(i = 1; i <= ROWS; i++){
 for(j = 1; j <= COLUMNS; j++){
 dt = fmax(fabs(Temperature[i][j]-Temperature_last[i][j]), dt);
 Temperature_last[i][j] = Temperature[i][j];
 }
 }

 // periodically print test values
 if((iteration % 100) == 0) {
 track_progress(iteration);
 }

 iteration++;
 }

Whole C Code

 gettimeofday(&stop_time,NULL);
 timersub(&stop_time, &start_time, &elapsed_time); // Unix time subtract routine

 printf("\nMax error at iteration %d was %f\n", iteration-1, dt);
 printf("Total time was %f seconds.\n", elapsed_time.tv_sec+elapsed_time.tv_usec/1000000.0);

}

// initialize plate and boundary conditions
// Temp_last is used to to start first iteration
void initialize(){

 int i,j;

 for(i = 0; i <= ROWS+1; i++){
 for (j = 0; j <= COLUMNS+1; j++){
 Temperature_last[i][j] = 0.0;
 }
 }

 // these boundary conditions never change throughout run

 // set left side to 0 and right to a linear increase
 for(i = 0; i <= ROWS+1; i++) {
 Temperature_last[i][0] = 0.0;
 Temperature_last[i][COLUMNS+1] = (100.0/ROWS)*i;
 }

 // set top to 0 and bottom to linear increase
 for(j = 0; j <= COLUMNS+1; j++) {
 Temperature_last[0][j] = 0.0;
 Temperature_last[ROWS+1][j] = (100.0/COLUMNS)*j;
 }
}

// print diagonal in bottom right corner where most action is
void track_progress(int iteration) {

 int i;

 printf("---------- Iteration number: %d ------------\n", iteration);
 for(i = ROWS-5; i <= ROWS; i++) {
 printf("[%d,%d]: %5.2f ", i, i, Temperature[i][i]);
 }
 printf("\n");
}

 do while (dt > max_temp_error .and. iteration <= max_iterations)

 do j=1,columns
 do i=1,rows
 temperature(i,j)=0.25*(temperature_last(i+1,j)+temperature_last(i-1,j)+ &
 temperature_last(i,j+1)+temperature_last(i,j-1))
 enddo
 enddo

 dt=0.0

 do j=1,columns
 do i=1,rows
 dt = max(abs(temperature(i,j) - temperature_last(i,j)), dt)
 temperature_last(i,j) = temperature(i,j)
 enddo
 enddo

 if(mod(iteration,100).eq.0) then
 call track_progress(temperature, iteration)
 endif

 iteration = iteration+1

 enddo

Serial Fortran Code (kernel)

Calculate

Update

temp

array and

find max

change

Output

Done?

subroutine initialize(temperature_last)
 implicit none

 integer, parameter :: columns=1000
 integer, parameter :: rows=1000
 integer :: i,j

 double precision, dimension(0:rows+1,0:columns+1) :: temperature_last

 temperature_last = 0.0

 !these boundary conditions never change throughout run

 !set left side to 0 and right to linear increase
 do i=0,rows+1
 temperature_last(i,0) = 0.0
 temperature_last(i,columns+1) = (100.0/rows) * i
 enddo

 !set top to 0 and bottom to linear increase
 do j=0,columns+1
 temperature_last(0,j) = 0.0
 temperature_last(rows+1,j) = ((100.0)/columns) * j
 enddo

end subroutine initialize

Serial Fortran Code Subroutines

subroutine track_progress(temperature, iteration)
 implicit none

 integer, parameter :: columns=1000
 integer, parameter :: rows=1000
 integer :: i,iteration

 double precision, dimension(0:rows+1,0:columns+1) :: temperature

 print *, '---------- Iteration number: ', iteration, ' ---------------'
 do i=5,0,-1
 write (*,'("("i4,",",i4,"):",f6.2," ")',advance='no'), &
 rows-i,columns-i,temperature(rows-i,columns-i)
 enddo
 print *

program serial
 implicit none

 !Size of plate
 integer, parameter :: columns=1000
 integer, parameter :: rows=1000
 double precision, parameter :: max_temp_error=0.01

 integer :: i, j, max_iterations, iteration=1
 double precision :: dt=100.0
 real :: start_time, stop_time

 double precision, dimension(0:rows+1,0:columns+1) :: temperature, temperature_last

 print*, 'Maximum iterations [100-4000]?'
 read*, max_iterations

 call cpu_time(start_time) !Fortran timer

 call initialize(temperature_last)

 !do until error is minimal or until maximum steps
 do while (dt > max_temp_error .and. iteration <= max_iterations)

 do j=1,columns
 do i=1,rows
 temperature(i,j)=0.25*(temperature_last(i+1,j)+temperature_last(i-1,j)+ &
 temperature_last(i,j+1)+temperature_last(i,j-1))
 enddo
 enddo

 dt=0.0

 !copy grid to old grid for next iteration and find max change
 do j=1,columns
 do i=1,rows
 dt = max(abs(temperature(i,j) - temperature_last(i,j)), dt)
 temperature_last(i,j) = temperature(i,j)
 enddo
 enddo

 !periodically print test values
 if(mod(iteration,100).eq.0) then
 call track_progress(temperature, iteration)
 endif

 iteration = iteration+1

 enddo

 call cpu_time(stop_time)

 print*, 'Max error at iteration ', iteration-1, ' was ',dt
 print*, 'Total time was ',stop_time-start_time, ' seconds.'

end program serial

Whole Fortran Code

! initialize plate and boundery conditions
! temp_last is used to to start first iteration
subroutine initialize(temperature_last)
 implicit none

 integer, parameter :: columns=1000
 integer, parameter :: rows=1000
 integer :: i,j

 double precision, dimension(0:rows+1,0:columns+1) :: temperature_last

 temperature_last = 0.0

 !these boundary conditions never change throughout run

 !set left side to 0 and right to linear increase
 do i=0,rows+1
 temperature_last(i,0) = 0.0
 temperature_last(i,columns+1) = (100.0/rows) * i
 enddo

 !set top to 0 and bottom to linear increase
 do j=0,columns+1
 temperature_last(0,j) = 0.0
 temperature_last(rows+1,j) = ((100.0)/columns) * j
 enddo

end subroutine initialize

!print diagonal in bottom corner where most action is
subroutine track_progress(temperature, iteration)
 implicit none

 integer, parameter :: columns=1000
 integer, parameter :: rows=1000
 integer :: i,iteration

 double precision, dimension(0:rows+1,0:columns+1) :: temperature

 print *, '---------- Iteration number: ', iteration, ' ---------------'
 do i=5,0,-1
 write (*,'("("i4,",",i4,"):",f6.2," ")',advance='no'), &
 rows-i,columns-i,temperature(rows-i,columns-i)
 enddo
 print *
end subroutine track_progress

Exercises: General Instructions for Compiling

Exercises are in the “Exercises/Laplace” directory in your home

directory

Solutions are in the “Laplace/Solutions” subdirectory

To compile

cc –acc laplace.c

ftn –acc laplace.f90

This will generate the executable a.out

Exercises: Very useful compiler option

Adding –Minfo=accel to your compile command will give you some very useful information about

how well the compiler was able to honor your OpenACC directives.

instr009@h2ologin2:~/Test> cc -acc -Minfo=accel laplace_bad_acc.c
main:
 71, Generating present_or_copyout(Temperature[1:1000][1:1000])
 Generating present_or_copyin(Temperature_old[0:][0:])
 Generating NVIDIA code
 Generating compute capability 1.3 binary
 Generating compute capability 2.0 binary
 Generating compute capability 3.0 binary
 72, Loop is parallelizable
 73, Loop is parallelizable
 Accelerator kernel generated
 72, #pragma acc loop gang /* blockIdx.y */
 73, #pragma acc loop gang, vector(128) /* blockIdx.x threadIdx.x */
 82, Generating present_or_copyin(Temperature[1:1000][1:1000])
 Generating present_or_copy(Temperature_old[1:1000][1:1000])
 Generating NVIDIA code
 Generating compute capability 1.3 binary
 Generating compute capability 2.0 binary
 Generating compute capability 3.0 binary
 83, Loop is parallelizable
 84, Loop is parallelizable
 Accelerator kernel generated
 83, #pragma acc loop gang /* blockIdx.y */
 84, #pragma acc loop gang, vector(128) /* blockIdx.x threadIdx.x */
 85, Max reduction generated for dt

Exercises: General Instructions for Running

Make sure you are in an interactive session - with idev - if you aren’t

already. The command prompt is your clue.

To run, use aprun:

instr003@nid25357:~> aprun –n1 a.out

You can compare against the serial code you are starting with to see what

performance gains you achieve. You can compile the serial version without

any extra flags (just cc or ftn), but run it as per the above. Rename your

a.out’s to avoid confusion.

Exercise 1: Using kernels to parallelize the main loops
(About 45 minutes)

Q: Can you get a speedup with just the kernels directives?

1. Edit laplace_serial.c/f90

1. Maybe copy your intended OpenACC version to laplace_acc.c to start

2. Add directives where it helps

2. Compile with OpenACC parallelization

1. cc -acc –Minfo=accel laplace_acc.c or

ftn -acc –Minfo=accel laplace_acc.f90

2. Look at your compiler output to make sure you are having an effect

3. Run

1. aprun –n1 a.out (Try 4000 iterations if you want a solution that converges to current tolerance)

2. Serial version for baseline time

3. Your OpenACC version for performance difference

Exercise 1 C Solution

while (dt > MAX_TEMP_ERROR && iteration <= max_iterations) {

 #pragma acc kernels
 for(i = 1; i <= ROWS; i++) {
 for(j = 1; j <= COLUMNS; j++) {
 Temperature[i][j] = 0.25 * (Temperature_last[i+1][j] + Temperature_last[i-1][j] +
 Temperature_last[i][j+1] + Temperature_last[i][j-1]);
 }
 }

 dt = 0.0; // reset largest temperature change

 #pragma acc kernels
 for(i = 1; i <= ROWS; i++){
 for(j = 1; j <= COLUMNS; j++){
 dt = fmax(fabs(Temperature[i][j]-Temperature_last[i][j]), dt);
 Temperature_last[i][j] = Temperature[i][j];
 }
 }

 if((iteration % 100) == 0) {
 track_progress(iteration);
 }

 iteration++;
}

Generate a GPU kernel

Generate a GPU kernel

Exercise 1 Fortran Solution
 do while (dt > max_temp_error .and. iteration <= max_iterations)

 !$acc kernels
 do j=1,columns
 do i=1,rows
 temperature(i,j)=0.25*(temperature_last(i+1,j)+temperature_last(i-1,j)+ &
 temperature_last(i,j+1)+temperature_last(i,j-1))
 enddo
 enddo
 !$acc end kernels

 dt=0.0

 !$acc kernels
 do j=1,columns
 do i=1,rows
 dt = max(abs(temperature(i,j) - temperature_last(i,j)), dt)
 temperature_last(i,j) = temperature(i,j)
 enddo
 enddo
 !$acc end kernels

 if(mod(iteration,100).eq.0) then
 call track_progress(temperature, iteration)
 endif

 iteration = iteration+1

 enddo

Generate a GPU kernel

Generate a GPU kernel

Exercise 1: Compiler output (C)

instr009@h2ologin2:~/Update> cc -acc -Minfo=accel laplace_bad_acc.c
main:
 62, Generating present_or_copyout(Temperature[1:1000][1:1000])
 Generating present_or_copyin(Temperature_last[0:][0:])
 Generating NVIDIA code
 Generating compute capability 1.3 binary
 Generating compute capability 2.0 binary
 Generating compute capability 3.0 binary
 63, Loop is parallelizable
 64, Loop is parallelizable
 Accelerator kernel generated
 63, #pragma acc loop gang /* blockIdx.y */
 64, #pragma acc loop gang, vector(128) /* blockIdx.x threadIdx.x */
 73, Generating present_or_copyin(Temperature[1:1000][1:1000])
 Generating present_or_copy(Temperature_last[1:1000][1:1000])
 Generating NVIDIA code
 Generating compute capability 1.3 binary
 Generating compute capability 2.0 binary
 Generating compute capability 3.0 binary
 74, Loop is parallelizable
 75, Loop is parallelizable
 Accelerator kernel generated
 74, #pragma acc loop gang /* blockIdx.y */
 75, #pragma acc loop gang, vector(128) /* blockIdx.x threadIdx.x */
 76, Max reduction generated for dt

Compiler was able to

parallelize

Compiler was able to

parallelize

Exercise 1: Performance
3372 steps to convergence

Execution Time (s) Speedup

CPU Serial (C) 36 --

CPU 2 OpenMP threads 24 1.5x

CPU 4 OpenMP threads 15 2.4x

CPU 8 OpenMP threads 9.8 3.7x

CPU 16 OpenMP threads 5.0 7.2

OpenACC GPU 64 0.6x
(0.08 vs. 16 CPU)

CPU: AMD 6276 Interlagos

8 Cores @ 2.3+GHz

GPU: NVIDIA GK110 Kepler

What’s with the OpenMP?

 We can compare our GPU results to the best the multi-core XEON CPUs can do.

 If you are familiar with OpenMP, or even if you are not, you can compile and run the

OpenMP enabled versions in your OpenMP directory as:

cc -mp=nonuma laplace_omp.c or ftn -mp=nonuma laplace_omp.f90

then to run on 8 threads do:

export OMP_NUM_THREADS=8

aprun -n 1 -d 8 a.out

What went wrong?
export PGI_ACC_TIME=1 to activate profiling and run again:

Accelerator Kernel Timing data
/mnt/a/u/training/instr009/Update/laplace_bad_acc.c
 main NVIDIA devicenum=0
 time(us): 22,902,870
 62: compute region reached 3372 times
 62: data copyin reached 3372 times
 device time(us): total=4,561,531 max=1,362 min=1,350 avg=1,352
 64: kernel launched 3372 times
 grid: [8x1000] block: [128]
 device time(us): total=441,105 max=268 min=129 avg=130
 elapsed time(us): total=487,585 max=282 min=141 avg=144
 70: data copyout reached 3372 times
 device time(us): total=4,063,246 max=1,230 min=1,202 avg=1,204
 73: compute region reached 3372 times
 73: data copyin reached 6744 times
 device time(us): total=9,135,367 max=1,428 min=1,346 avg=1,354
 75: kernel launched 3372 times
 grid: [8x1000] block: [128]
 device time(us): total=546,820 max=296 min=155 avg=162
 elapsed time(us): total=593,424 max=309 min=171 avg=175
 75: reduction kernel launched 3372 times
 grid: [1] block: [256]
 device time(us): total=91,638 max=161 min=25 avg=27
 elapsed time(us): total=136,871 max=174 min=38 avg=40
 82: data copyout reached 3372 times
 device time(us): total=4,063,163 max=1,259 min=1,202 avg=1,204

4.5 seconds

4.0 seconds

0.6 seconds

0.5 seconds

0.1 seconds

9.1 seconds

4.0 seconds

Basic Concept
Simplified, but sadly true

PCI Bus GPU

GPU Memory

CPU

CPU Memory

Multiple Times Each Iteration

PCI Bus

CPU Memory GPU Memory

CPU GPU

A(i,j) A(i+1,j) A(i-1,j)
A(i,j-1)

A(i+1,j)

A(i,j) A(i+1,j) A(i-1,j)

A(i,j-1)

A(i+1,j)

A(i,j) A(i+1,j) A(i-1,j)

A(i,j-1)

A(i+1,j)

Excessive Data Transfers
while (dt > MAX_TEMP_ERROR && iteration <= max_iterations) {

#pragma acc kernels
for(i = 1; i <= ROWS; i++) {
 for(j = 1; j <= COLUMNS; j++) {
 Temperature[i][j] = 0.25 * (Temperature_old[i+1][j] + …
 }
}

Temperature, Temperature_old

resident on host

Temperature, Temperature_old

resident on host

Temperature, Temperature_old

resident on device

Temperature, Temperature_old

resident on device
4 copies happen

every iteration of

the outer while

loop!

#pragma acc kernels
for(i = 1; i <= ROWS; i++) {
 for(j = 1; j <= COLUMNS; j++) {
 Temperature[i][j] = 0.25 * (Temperature_old[i+1][j] + …
 }
}

Temperature, Temperature_old

resident on host

Temperature, Temperature_old

resident on host

Temperature, Temperature_old

resident on device

Temperature, Temperature_old

resident on device

}

dt = 0.0;

Data Management

The First, Most Important, and possibly Only OpenACC Optimization

while (dt > MAX_TEMP_ERROR && iteration <= max_iterations) {
 #pragma acc kernels
 for(i = 1; i <= ROWS; i++) {
 for(j = 1; j <= COLUMNS; j++) {
 Temperature[i][j] = 0.25 * (Temperature_last[i+1][j] + Temperature_last[i-1][j] +
 Temperature_last[i][j+1] + Temperature_last[i][j-1]);
 }
 }

 dt = 0.0;

 #pragma acc kernels
 for(i = 1; i <= ROWS; i++){
 for(j = 1; j <= COLUMNS; j++){
 dt = fmax(fabs(Temperature[i][j]-Temperature_last[i][j]), dt);
 Temperature_last[i][j] = Temperature[i][j];
 }
 }

 .
 .
 iteration++;
}

First, about that “reduction”

Exiting this loop,

each processor has

a different idea of

what the max dt is.

That the compiler recognizes this and

does a reduction is a wonderful thing.

Indeed, we can get too sophisticated

for it to happen automatically.

loop reduction (max:dt)

This explicitly declares the

reduction.

This will be combined with

(intelligently) initialized

parallel copies at end.

Data Construct Syntax and Scope

Fortran

!$acc data [clause …]

 structured block

!$acc end data

C

#pragma acc data [clause …]

{

 structured block

}

Data Clauses

copy(list) Allocates memory on GPU and copies data from host to GPU when

entering region and copies data to the host when exiting region.

 Principal use: For many important data structures in your code, this

is a logical default to input, modify and return the data.

copyin(list) Allocates memory on GPU and copies data from host to GPU when

entering region.

 Principal use: Think of this like an array that you would use as just

an input to a subroutine.

copyout(list) Allocates memory on GPU and copies data to the host when exiting

region.

 Principal use: A result that isn’t overwriting the input data structure.

create(list) Allocates memory on GPU but does not copy.

 Principal use: Temporary arrays.

Present Data Clauses

The “present” data clauses are used when the data is already present because

of a containing data region.

present(list) Data is already present on GPU from another containing data region.

 Principal use: You are calling this routine from inside a routine that

already has a data clause.

 You can’t be positive that the data is present from a surrounding data

region.

 Principal use: A subroutine that may or may not be called from within

a data region or for multi-threaded codes so that only one thread

migrates data.

present_or_copy

present_or_copyin

present_or_copyout

present_or_create

Array Shaping

Compilers sometimes cannot determine the size of arrays, so we must specify

explicitly using data clauses with an array “shape”. The compiler will let you know

if you need to do this. Sometimes, you will want to for your own efficiency reasons.

C

 #pragma acc data copyin(a[0:size]), copyout(b[s/4:3*s/4])

Fortran

 !$acc data copyin(a(1:size)), copyout(b(s/4:3*s/4))

Fortran uses start:end and C uses start:length

Data clauses can be used on data, kernels or parallel

Compiler will (increasingly) often make a good guess…

int main(int argc, char *argv[]) {

 int i;
 double A[2000], B[1000], C[1000];

 #pragma acc kernels
 for (i=0; i<1000; i++){

 A[i] = 4 * i;
 B[i] = B[i] + 2;
 C[i] = A[i] + 2 * B[i];

 }
}

Smart

pgcc -acc -Minfo=accel loops.c
main:
 6, Generating present_or_copyout(C[:])
 Generating present_or_copy(B[:])
 Generating present_or_copyout(A[:1000])
 Generating NVIDIA code
 7, Loop is parallelizable
 Accelerator kernel generated

Smarter

Smartest

int main(int argc, char** argv){

float A[1000];

 #pragma acc kernels

 for(int iter = 1; iter < 1000 ; iter++){

 A[iter] = 1.0;

 }

 A[10] = 2.0;

 printf("A[10] = %f", A[10]);

}

Data Regions Have Real Consequences

Simplest Kernel With Global Data Region

Output:

A[10] = 2.0

int main(int argc, char** argv){

float A[1000];

 #pragma acc kernels

 for(int iter = 1; iter < 1000 ; iter++){

 A[iter] = 1.0;

 }

 A[10] = 2.0;

 printf("A[10] = %f", A[10]);

}

Output:

A[10] = 1.0

A[]

Copied

To GPU

A[]

Copied

To Host

Runs

On

Host

#pragma acc data copy(A)

 {

}

A[]

Copied

To GPU

Still

Runs On

Host

A[]

Copied

To Host

int main(int argc, char** argv){

float A[1000];

 #pragma acc kernels

 for(int iter = 1; iter < 1000 ; iter++){

 A[iter] = 1.0;

 }

 A[10] = 2.0;

 printf("A[10] = %f", A[10]);

}

Data Regions Are Different Than Compute Regions

Output:

A[10] = 1.0

#pragma acc data copy(A)

 {

}

Data

Region

Compute

Region

Data Movement Decisions

Much like loop data dependencies, sometime the compiler needs your human

intelligence to make high-level decisions about data movement. Otherwise, it

must remain conservative – sometimes at great cost.

You must think about when data truly needs to migrate, and see if that is better

than the default.

Besides the scope based data clauses, there are OpenACC options to let us manage

data movement more intensely or asynchronously. We could manage the above

behavior with the update construct:

Fortran : C:
!$acc update [host(), device(), …] #pragma acc update [host(), device(), …]

Ex: #pragma acc update host(Temp_array) //Gets host a current copy

Exercise 2: Use acc data to minimize transfers
(about 40 minutes)

Q: What speedup can you get with data + kernels directives?

• Start with your Exercise 1 solution or grab laplace_bad_acc.c/f90 from the Solutions

subdirectory. This is just the solution of the last exercise.

• Add data directives where it helps.

• Think: when should I move data between host and GPU? Think how you would do it by

hand, then determine which data clauses will implement that plan.

• Hint: you may find it helpful to ignore the output at first and just concentrate on getting

the solution to converge quickly (at 3372 steps). Then worry about updating the printout.

Exercise 2 C Solution
 #pragma acc data copy(Temperature_last), create(Temperature)
 while (dt > MAX_TEMP_ERROR && iteration <= max_iterations) {

 // main calculation: average my four neighbors
 #pragma acc kernels
 for(i = 1; i <= ROWS; i++) {
 for(j = 1; j <= COLUMNS; j++) {
 Temperature[i][j] = 0.25 * (Temperature_last[i+1][j] + Temperature_last[i-1][j] +
 Temperature_last[i][j+1] + Temperature_last[i][j-1]);
 }
 }

 dt = 0.0; // reset largest temperature change

 // copy grid to old grid for next iteration and find latest dt
 #pragma acc kernels
 for(i = 1; i <= ROWS; i++){
 for(j = 1; j <= COLUMNS; j++){
 dt = fmax(fabs(Temperature[i][j]-Temperature_last[i][j]), dt);
 Temperature_last[i][j] = Temperature[i][j];
 }
 }

 // periodically print test values
 if((iteration % 100) == 0) {
 #pragma acc update host(Temperature)
 track_progress(iteration);
 }

 iteration++;
 }

No data movement in this

block.

Except once in a while

here.

Exercise 2 Fortran Solution
 !$acc data copy(temperature_last), create(temperature)
 do while (dt > max_temp_error .and. iteration <= max_iterations)

 !$acc kernels
 do j=1,columns
 do i=1,rows
 temperature(i,j)=0.25*(temperature_last(i+1,j)+temperature_last(i-1,j)+ &
 temperature_last(i,j+1)+temperature_last(i,j-1))
 enddo
 enddo
 !$acc end kernels

 dt=0.0

 !copy grid to old grid for next iteration and find max change
 !$acc kernels
 do j=1,columns
 do i=1,rows
 dt = max(abs(temperature(i,j) - temperature_last(i,j)), dt)
 temperature_last(i,j) = temperature(i,j)
 enddo
 enddo
 !$acc end kernels

 !periodically print test values
 if(mod(iteration,100).eq.0) then
 !$acc update host(temperature)
 call track_progress(temperature, iteration)
 endif

 iteration = iteration+1

 enddo
 !$acc end data

Keep these on GPI

Except bring back a copy

here

Extra efficient:

!$acc update host(temperature(columns-5:columns,rows-5:rows))

Exercise 2: Performance
3372 steps to convergence

Execution Time (s) Speedup

CPU Serial (C) 36 --

CPU 2 OpenMP threads 24 1.5x

CPU 4 OpenMP threads 15 2.4x

CPU 8 OpenMP threads 9.8 3.7x

CPU 16 OpenMP threads 5.0 7.2

OpenACC GPU 1.7 21x
(3X vs. 16 CPU)

CPU: AMD 6276 Interlagos

8 Cores @ 2.3+GHz

GPU: NVIDIA GK110 Kepler

Further speedups

OpenACC gives us even more detailed control over parallelization

Via gang, worker, and vector clauses

By understanding more about OpenACC execution model and GPU

hardware organization, we can get higher speedups on this code

By understanding bottlenecks in the code via profiling, we can

reorganize the code for higher performance

But you have already gained most of any potential speedup, and

you did it with a few lines of directives!

General Principles: Finding Parallelism In Code

Nested for/do loops are best for parallelization

Large loop counts are best

Iterations of loops must be independent of each other

To help compiler: restrict keyword (C), independent clause

Use subscripted arrays, rather than pointer-indexed arrays (C)

Data regions should avoid wasted transfers

If applicable, could use directives to explicitly control sizes

Various other annoying things can interfere with accelerated regions

IO

Limitations on function calls and nested parallelism (relaxed much in 2.0)

Is OpenACC Living Up To My Claims?

High-level. No involvement of OpenCL, CUDA, etc.

Single source. No forking off a separate GPU code. Compile the same program

for accelerators or serial, non-GPU programmers can play along.

Efficient. Experience show very favorable comparison to low-level

implementations of same algorithms. kernels is magical!

Performance portable. Supports GPU accelerators and co-processors from

multiple vendors, current and future versions.

Incremental. Developers can port and tune parts of their application as

resources and profiling dictates. No wholesale rewrite required. Which can be

quick.

