Reconstruction of lost EEG data to predict and classify Alzheimer's disease

Jeremy-LIU Zihuan-City University of Hong Kong Joshua Dunkley –University of Tennessee, Knoxville Arden-GUO Jinxu-City University of Hong Kong

Objective

- Build a reconstruction model to minimize loss of data for specific channels in scalp EEG
 - Build regression models to construct channel i for normal control (NC), mild cognitive impairment (MCI), or Alzheimer's disease (AD).
- Calculate the correlation coefficients of the predicted data and the original data
- Use PCA to find the principle components and graph the data to see if the data clusters by cognitive state
- Create a visual representation of the brain activity for each of the NC-, MCI-, AD- models to better visualize the structure of the cognitive state.

Electroencephalogram (EEG)

Montheman

Model	# of	# of	Activation	Batch_size	epoch	loss
Туре	hidden	nodes of	functions			
	layers	hidden				
		layers				
MCI	1	40	Selu	8	100	45
	_		linear			
MCI	2	50	Relu,	100	1000	28.3007
		50	hard_sigmoid			
			linear			
MCI	2	50	Relu	100	1000	25.6433
		50	Relu			
			linear			
MCI	2	50	Relu	100	1000	20.9690
		100	Tanh			
			linear			
MCI	2	57	Relu	100	1000	26.8425
		114	Relu			
			Linear			
MCI	2	57	Relu	100	1000	19.1075
		114	Tanh			
			linear			
MCI	2	57	Relu	100	1000	22.1408
		114	Hard_sigmoid			
			linear			
MCI	2	60	Relu	100	1000	14.7909
		120	Relu			
			linear			
AD	2	60	Relu	100	1000	3.1272
		120	Relu			
			linear			
AD	1	5	Relu	5000	1000	25
			linear			
AD	1	5	Relu	10000	200	26.72
			linear			

Artificial neural network

Research Plan

Steps

- 1. Separate the subjects into training sets based on the cognitive state
 - Keep a record of the subject ID, subject data, and subject cognitive state in a class object
- 2. Build Reconstruction models for all 3 training sets to save time with building models during actual training
- Loop through the NC-training set and build reconstruction models for Nc_i using the data from the other n subjects in the NC-training set
- 4. Make predictions for each subjects along the way and calculate the correlation coefficient between the original data and the predicted data.
- 5. Repeat Steps 3-4 for the MCI- and AD-training sets.
- 6. Reorganize the correlation coefficients for all the subjects into a matrix, and perform feature reduction and PCA on the newly restructured data.
- 7. Create an SVM Model for principle components

Research Plan

- Algorithms/Math
 - Leave-one-out principle
 - Correlation Coefficient
 - Principle Component Analysis (PCA)

Research Plan

- Implementation
 - Currently working with Python script and IPython Notebooks in Google Collaboratory
 - Built Reconstruction Models using Keras with a Tensorflow backend
 - Made graphs and figures using Matplotlib
 - Use sklearn to normalize the data, and perform feature reduction and Principle Component Analysis on reconstructed data

Data normalization

Standardization

Standardize features by removing the mean and scaling to unit variance

- Faster learning speed
- a feature has a variance that is orders of magnitude larger that others, it might dominate the objective function, causing the estimator unable to learn from other features correctly as expected.

Gradient of larger parameter dominates the update

Results

Results

PCA results

Correlation Matrix

- Row subjects
- Column status

PCA result

- 2 principle components
- Plot diagram
- Most of subjects clustered togrther

