
Neural Network
Hyperparameter Optimization

Chris Ouyang (CUHK Mathematics) Daniel McBride (UTK Mathematics)

2019 JICS RECSEM REU. In collaboration with Kwai Wong (JICS), Stan Tomov (ICL), and Junqi Yin (ORNL)

Presentation Outline
● Introduction

● Learning Curve Matching

● Population Based Training with MagmaDNN

Introduction
● What is a hyperparameter?

They are neural network “presets” like
network architecture, learning rate, batch
size, and more.

● Why do we need to optimize the
hyperparameters?

A poor choice of hyperparameters can
cause a network’s accuracy to converge
slowly or not at all.

towardsdatascience.com

Introduction
● What are some obstacles to optimizing hyperparameters?

○ The Curse of Dimensionality
○ Highly irregular (nonconvex, nondifferentiable) search spaces

● What are some standard hyperparameter optimization techniques?
○ Classic Approaches: Grid Search, Random Search
○ Modern Approaches: Early Stopping, Evolutionary Algorithms

An Early Stopping Algorithm

Based on Learning Curve Matching

Hyperparameter Algorithms
● Hyperparameter

Selection: Random search,
grid search and Bayesian
optimization

● Early stopping: Successive
Halving Algorithm (SHA)
and Hyperband

● Advanced Algorithm:
Evolutionary Algorithms,
such as population based
training (PBT) and swarm
optimization.

An Early Stopping Algorithm Based on Learning Curve Matching - Chris Ouyang

LCM Algorithm: Flow Chart and Terms

● Trials: Sets contain a
single sample for every
hyperparameter.

● Learning Curves: arrays of
the numerical values of the
loss function during certain
stages of a single training.

● Check Points: points where
LCM is applied to decide
whether abort the training

An Early Stopping Algorithm Based on Learning Curve Matching - Chris Ouyang

LCM Algorithm: Accumulation Stage

Training Process

An Early Stopping Algorithm Based on Learning Curve Matching - Chris Ouyang

Learning Curve with performance
[Loss_1, Loss_2, Loss_3, Loss_4, Loss_5, …… , Loss_n, Performance]

Cum Pts:
Check Pts:

Data Set:
[LC_1, Performance_1],
[LC_2, Performance_2],
[LC_3, Performance_3],
[LC_4, Performance_4],
……
[LC_m, Performance_m]

LCM Algorithm: Checking Stage

Training Process

An Early Stopping Algorithm Based on Learning Curve Matching - Chris Ouyang

Learning Curve
[Loss_1, Loss_2, Loss_3, …… , Loss_k]

Cum Pts:
Check Pts:

Data Set:
[L11, L12, L13, ..., L1n Performance_1],
[L21, L22, L23, … , L2n Performance_2],
[L31, L32, L33, … , L3n Performance_3],
[L41, L42, L43, … , L4n Performance_4],
……
[Lm1, Lm2, Lm3, … , Lmn, Performance_m]

Data Set:
[L11, L12, L13, ..., L1k],
[L21, L22, L23, … , L2k],
[L31, L32, L33, … , L3k],
[L41, L42, L43, … , L4k],
……
[Lm1, Lm2, Lm3, … , Lmk]

LCM Algorithm: Pseudocode

An Early Stopping Algorithm Based on Learning Curve Matching - Chris Ouyang

Key Steps:

Step 5: Check Trigger for

activating checkpoints

Step 6: Starting Training

Step 8-9: Accumulation

Step 10-11: Checking

LCM Algorithm: Checking Stage

Learning Curve
[L_1, L_2, L_3, …… ,
L_k]

An Early Stopping Algorithm Based on Learning Curve Matching - Chris Ouyang

Data Set:
[L11, L12, L13, ..., L1k],
[L21, L22, L23, … , L2k],
[L31, L32, L33, … , L3k],
[L41, L42, L43, … , L4k],
……
[Lm1, Lm2, Lm3, … , Lmk]

Distance Function F
(such as L1, L2, L∞)

Distance List:
[Distance_1,
Distance_2,
Distance_3,
Distance_4
…

Distance_m]

The nearest neighbor j := argmin(Distance list)

Predicted Performance:
Performance_j

The rank of it: rank_j

The rank percentage:
Percentage_j

If Per_j > keep_rate:
Stop training;
Otherwise, continue
training.

Learning Curve
[L_1, L_2, L_3, …… , L_k]

Data Set:
[L11, L12, L13, ..., L1k],
[L21, L22, L23, … , L2k],
[L31, L32, L33, … , L3k],
[L41, L42, L43, … , L4k],
……
[Lm1, Lm2, Lm3, … , Lmk]

Distance Function F
(such as L1, L2, L∞)

Distance List:
[Distance_1,
Distance_2,
Distance_3,
Distance_4
…

Distance_m]

Data Set:
[Performance_1,
Performance_2,
Performance_3,
Performance_4,
…

Performance_m]

LCM Algorithm: Pseudocode

An Early Stopping Algorithm Based on Learning Curve Matching - Chris Ouyang

Y: Dataset; gamma: Learning Curve; d: Distance Metric; s: Early-stopping Rate

LCM Algorithm: MNIST Group
● Network: Only one dense layer
● Dataset: MNIST
● Optimizer: Stochastic gradient descent
● Benchmark: Random search

An Early Stopping Algorithm Based on Learning Curve Matching - Chris Ouyang

LCM Algorithm: MNIST Group

● Given a fixed number of trials, we compared two algorithms’ computing time
and best performances. The same experiments are repeated 9 times.

An Early Stopping Algorithm Based on Learning Curve Matching - Chris Ouyang

Name Trials Computing Time (S) Best Performance (%)

LCM 100 778.50 97.10

Random 100 3657.75 97.41

Remark: In 5 of 9 experiments, these two algorithms got the same optimal
hyperparameters.

LCM Algorithm: MNIST Group

● Given fixed computing time, we compared two algorithms’ best performances.
The same experiments are repeated 5 times.

An Early Stopping Algorithm Based on Learning Curve Matching - Chris Ouyang

Computing time (s) 100 200 400 800 1600

LCM 96.274 96.996 97.01 97.082 97.22

Random 95.562 96.24 96.346 96.294 95.44

LCM Algorithm: MNIST Group

An Early Stopping Algorithm Based on Learning Curve Matching - Chris Ouyang

LCM Algorithm: CIFAR10 Group

● Network: Four CNN layers and

several dense layers

● Dataset: CIFAR10

● Optimizer: Adam

● Benchmark: Random search

An Early Stopping Algorithm Based on Learning Curve Matching - Chris Ouyang

LCM Algorithm: CIFAR10 Group

● Given a fixed number of trials, we compared two algorithms’ computing time
and best performances. The same experiments are repeated 12 times.

An Early Stopping Algorithm Based on Learning Curve Matching - Chris Ouyang

Name Trials Computer Time (S) Best Performance (%)

LCM 100 8069.08 67.05

Random 100 26498.00 67.26

Remark: in 7 of 12 experiments, two algorithms got the same optimal
hyperparameters.

LCM Algorithm: CIFAR10 Group

● Given fixed computing time, we compared two algorithms’ best performances.
The same experiments are repeated 5 times.

An Early Stopping Algorithm Based on Learning Curve Matching - Chris Ouyang

Computing time (s) 1000 2000 4000 8000

LCM 59.23 65.06 65.07 67.74

Random 57.96 61.86 62.72 66.88

LCM Algorithm: CIFAR10 Group

An Early Stopping Algorithm Based on Learning Curve Matching - Chris Ouyang

LCM Algorithm: Further Discussion

● Neutral Network Design

● Parallel Programming

● New Combinations

● ‘Ultraparameters’

An Early Stopping Algorithm Based on Learning Curve Matching - Chris Ouyang

LCM Algorithm: Other Work

An Early Stopping Algorithm Based on Learning Curve Matching - Chris Ouyang

Population Based Training

with MagmaDNN

PBT: Background

● What is Population Based Training
(PBT)?

PBT is an evolutionary hyperparameter
optimization algorithm.

● Evolutionary optimization algorithms
use natural models to inspire a particular approach
to traversing a search space to find the minimum of
an objective function. One classic case is the
Particle Swarm Optimization algorithm, inspired by
the swarming behavior of bees.

Population Based Training with MagmaDNN

Particle Swarm Optimization

wikimedia

PBT: Background

● What are the benefits of PBT?

PBT outperforms the standard hyperparameter tuning benchmarks. These benchmark
algorithms, Grid Search and Random Search, each have their own limitations,
which PBT overcomes.

● Why should we implement it on MagmaDNN?
○ MagmaDNN is engineered for high performance computing on large distributed

systems.
○ The current standard implementation (Ray-Tune: shared memory model) has a

scalability bottleneck.

Population Based Training with MagmaDNN

PBT: Algorithm

How does the PBT Algorithm work?

● Population Model
● Stochasticity
● Exploit / Explore
● Early Stopping
● Evolution
● Adaptive Hyperparameter

Scheduling

Population Based Training with MagmaDNN

PBT: Algorithm

Image from arcfertility.com

Step 1

Initialize Networks
Random Weights

Random Hyperparameters

How does the PBT Algorithm work?

● Population Model
● Stochasticity
● Exploit / Explore
● Early Stopping
● Evolution
● Adaptive Hyperparameter

Scheduling

Population Based Training with MagmaDNN

PBT: Algorithm

Image from arcfertility.com

Step 2

Training Period
Networks optimize weights

in the usual way
(SGD, ADAM, etc.)

How does the PBT Algorithm work?

● Population Model
● Stochasticity
● Exploit / Explore
● Early Stopping
● Evolution
● Adaptive Hyperparameter

Scheduling

Population Based Training with MagmaDNN

PBT: Algorithm

Image from arcfertility.com

Step 3

Rank Fitness
accuracy, loss or other measure

determines most and least fit

✗ ✔ ✔ ✗ ✗
✔

How does the PBT Algorithm work?

● Population Model
● Stochasticity
● Exploit / Explore
● Early Stopping
● Evolution
● Adaptive Hyperparameter

Scheduling

Population Based Training with MagmaDNN

PBT: Algorithm

Image from arcfertility.com

Step 4

Exploit
Copy the weights and

hyperparameters from the
most fit to the least

✗ ✔ ✔ ✗ ✗
✔

How does the PBT Algorithm work?

● Population Model
● Stochasticity
● Exploit / Explore
● Early Stopping
● Evolution
● Adaptive Hyperparameter

Scheduling

Population Based Training with MagmaDNN

PBT: Algorithm

Image from arcfertility.com

Step 5

Explore
Perturb the updated

hyperparameters

✗ ✔ ✔ ✗ ✗
✔

How does the PBT Algorithm work?

● Population Model
● Stochasticity
● Exploit / Explore
● Early Stopping
● Evolution
● Adaptive Hyperparameter

Scheduling

Population Based Training with MagmaDNN

PBT: Algorithm

Image from arcfertility.com

Repeat

Train -> Exploit -> Explore
process until desired convergence

✗ ✔ ✔ ✗ ✗
✔...

...

How does the PBT Algorithm work?

● Population Model
● Stochasticity
● Exploit / Explore
● Early Stopping
● Evolution
● Adaptive Hyperparameter

Scheduling

Population Based Training with MagmaDNN

PBT: Algorithm

How does the PBT Algorithm work?

● Population Model
● Stochasticity
● Exploit / Explore
● Early Stopping
● Evolution
● Adaptive Hyperparameter

Scheduling

Images from arcfertility.com and csworldaffairs.org

End Result: Optimized networks with optimized hyperparameter schedules

✗ ✔ ✔ ✗ ✗
✔...

... ...

...

Population Based Training with MagmaDNN

PBT: Algorithm

How does the PBT Algorithm work?
Jaderberg et al.

Population Based Training with MagmaDNN

PBT: Algorithm

Does PBT’s functionality improve on the benchmark algorithms?

Grid Search Random Search PBT

Parallelizability ✔ ✔ ✔

Stochasticity ✗ ✔ ✔

Early Stopping ✗ ✗ ✔

Adaptive
Hyperparameters ✗ ✗ ✔

Population Based Training with MagmaDNN

PBT: Analysis - Learning Rate Optimization

● Data: MNIST
○ 60k images of handwritten digits 0-9
○ 256 greyscale pixels per image
○ 10 categories (0-9)

● Network Backend: MagmaDNN
○ Network Structure: In -> FCB -> Sig -> FCB -> Sig -> FCB -> Out
○ Weight Optimizer: Stochastic Gradient Descent
○ Number of Epochs = 5
○ Batch Size = 32

● Communication Backend: MPI

*FCB := Fully
Connected

Layer with Bias
*Sig := Sigmoid
Activation

Population Based Training with MagmaDNN

PBT: Analysis - Learning Rate Optimization

Population Based Training with MagmaDNN

PBT: Analysis - Learning Rate Optimization

Population Based Training with MagmaDNN

10 Workers
Thick Lines: Upper Quartile
Bold Line: Fittest Worker

Worker
Trial 1
Final

Accuracy

1 0.9251

2 0.9574

3 0.9281

4 0.9468

5 0.925

6 0.9258

7 0.9258

8 0.9378

9 0.9411

10 0.9278

LR Sampling Distribution Uniform Random between .0001 and .2

LR Decay Ratio Sampling Distribution Uniform Random between .99 and 1

LR Decay Pace Every 20 iterations

Evolution Pace Every 120 iterations

LR Perturbation Distribution 120% and 80% equally likely

LR Decay Ratio Perturbation Distribution 99% and 101% equally likely

Tr
ia

l 1
 S

pe
ci

fic
at

io
ns

Trial 1

PBT: Analysis - Learning Rate Optimization

Population Based Training with MagmaDNN

Worker
Trial 2
Final

Accuracy

1 0.957

2 0.9322

3 0.9419

4 0.9155

5 0.9151

6 0.9112

7 0.9161

8 0.916

9 0.9146

10 0.9114

10 Workers
Thick Lines: Upper Quartile
Bold Line: Fittest Worker

Trial 2

LR Sampling Distribution Uniform Random between .0001 and .2

LR Decay Ratio Sampling Distribution Uniform Random between .98 and 1.01

LR Decay Pace Every 20 iterations

Evolution Pace Every 120 iterations

LR Perturbation Distribution No perturbation

LR Decay Ratio Perturbation Distribution Uniform Random between 90% and 110%

Tr
ia

l 2
 S

pe
ci

fic
at

io
ns

Conclusions

● Program more custom MagmaDNN
classes to explore the tuning of
Convolutional Neural Network
hyperparameters.

● Implement LCM using the
MagmaDNN framework.

● Complete an implementation of
MagmaDNN PBT utilizing
OpenDIEL’s distributed workflow
system.

● Dynamic and adaptive learning rate
optimization, such as that deployed in
our MagmaDNN PBT implementation,
improves the convergence of neural
networks.

● Early stopping hyperparameter tuning
algorithms, such as LCM, can compete
with standard benchmarks like Random
Search.

Future Work

Thanks for listening!
-The Hyperparameter Team

Acknowledgements: National Science Foundation, Joint Institute of
Computational Sciences (UT-ORNL), Extreme Science and Engineering

Discovery Environment (XSEDE), BP HPC Team.
References: Bergstra and Bengio, Random Search for Hyperparameter
Optimization, 2012; Goodfellow et al, Deep Learning, 2016; Jaderberg

et al, Population Based Training of Neural Networks, 2017.

