Neural Network Hyperparameter Optimization

Chris Ouyang (CUHK Mathematics)

Daniel McBride (UTK Mathematics)

2019 JICS RECSEM REU. In collaboration with Kwai Wong (JICS), Stan Tomov (ICL), and Junqi Yin (ORNL)

Presentation Outline

- Introduction
- Learning Curve Matching
- Population Based Training with MagmaDNN

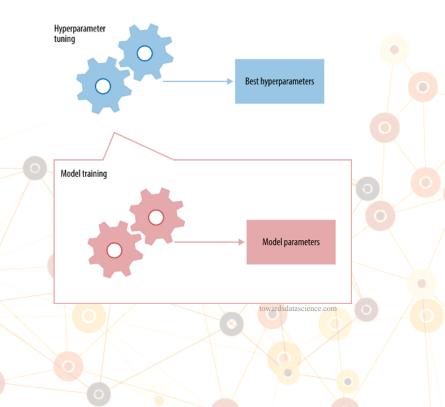
Introduction

• What is a hyperparameter?

They are neural network "presets" like network architecture, learning rate, batch size, and more.

• Why do we need to optimize the hyperparameters?

A poor choice of hyperparameters can cause a network's accuracy to converge slowly or not at all.



Introduction

- What are some obstacles to optimizing hyperparameters?
 - The Curse of Dimensionality
 - Highly irregular (nonconvex, nondifferentiable) search spaces

- What are some standard hyperparameter optimization techniques?
 Classic Approaches: Grid Search, Random Search
 - Modern Approaches: Early Stopping, Evolutionary Algorithms

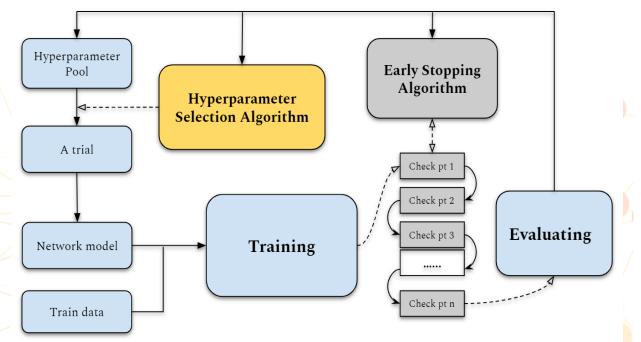
An Early Stopping Algorithm Based on Learning Curve Matching

Hyperparameter Algorithms

• Hyperparameter

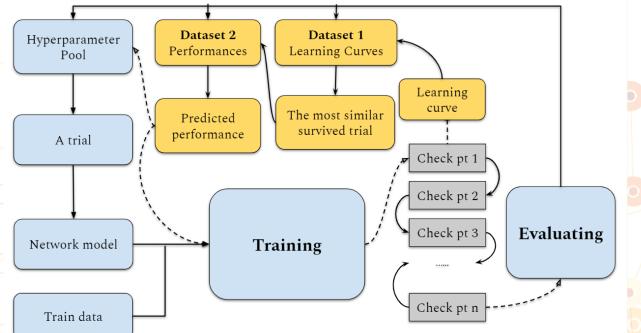
Selection: Random search, grid search and Bayesian optimization

- Early stopping: Successive Halving Algorithm (SHA) and Hyperband
- Advanced Algorithm: Evolutionary Algorithms, such as population based training (PBT) and swarm optimization.



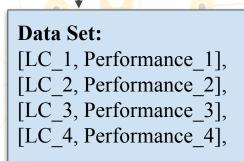
LCM Algorithm: Flow Chart and Terms

- *Trials*: Sets contain a single sample for every hyperparameter.
- *Learning Curves*: arrays of the numerical values of the loss function during certain stages of a single training.
- *Check Points*: points where
 LCM is applied to decide
 whether abort the training

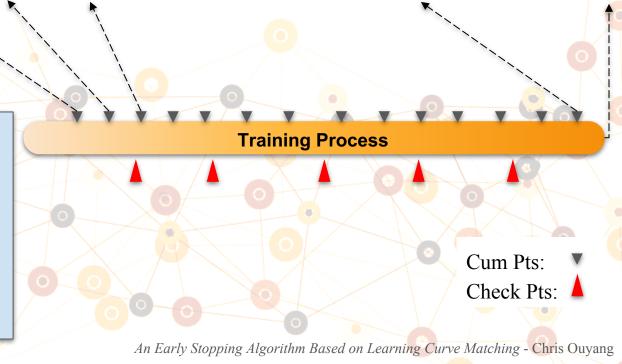


LCM Algorithm: Accumulation Stage

Learning Curve with performance

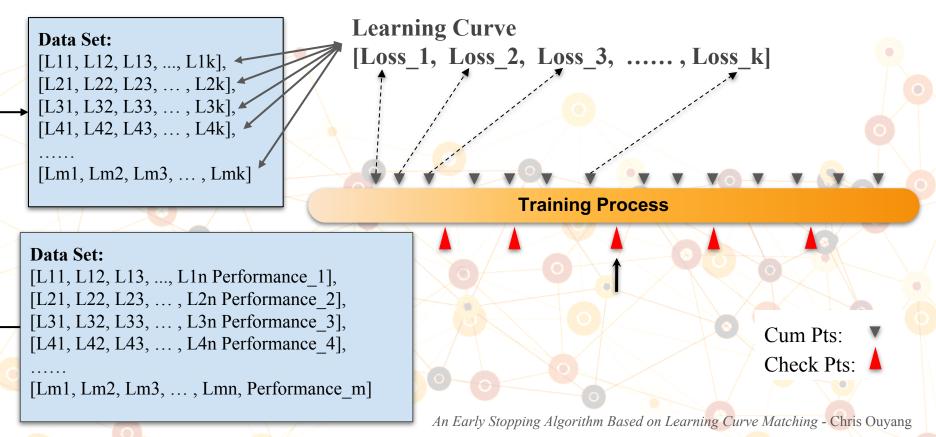


[LC_m, Performance_m]



[Loss_1, Loss_2, Loss_3, Loss_4, Loss_5,, Loss_n, Performance]

LCM Algorithm: Checking Stage



LCM Algorithm: Pseudocode

Key Steps:

Step 5: Check Trigger for

activating checkpoints

Step 6: Starting Training

Step 8-9: Accumulation

Step 10-11: Checking

Algorithm 1 Learning Curve Matching Algorithm

1: **Input:** number of configurations *n*, early-stopping rate *s*, split rate *r*, set of checkpoints *C*, set of accumulating points *A* and distance metric *d*

2: Initialization: T = hyperparameter_configuration_generator(n), performance list Z = empty list [], learning curve list X = empty list []

3: for configuration $\theta \in T$ do

4: learning curve $\gamma = \text{empty list} []$

5: check trigger = [length(Z) > n * r]

6: while training do

7: training progress $p = \text{get_training_progress}(\theta)$

8: if $p \in A$ then

9:

11:

 $\operatorname{append}[\gamma, \operatorname{get_training_performance}(\theta)]$

10: **if** $p \in C$ **and** check trigger **then**

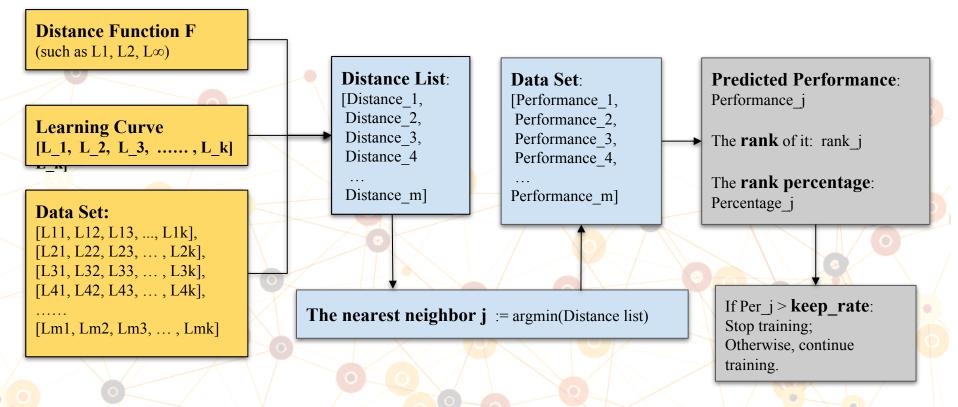
stop_training_trigger = $check(Y, \gamma, d, s)$

12: append $[X, \gamma]$

13: append[Z,get_final_performance(θ)]

14: **Output:** the best performance max(Z)

LCM Algorithm: Checking Stage



LCM Algorithm: Pseudocode

Y: Dataset; gamma: Learning Curve; *d*: Distance Metric; *s*: Early-stopping Rate

Algo	rithm 2 The Function: check	
1: f	unction CHECK (Y, γ, d, s)	
2:	$Y = \texttt{fit}(X, \texttt{length}(\gamma))$	\triangleright keep the first length(γ) elements of every previous learning curve for
с	omparison	
3:	$D={\tt get_distances}~(Y,\gamma,$	d) \triangleright compute the distances between γ and every fitted learning curve in
Y	r based on the metric d	
4:	the most similar trial $i = argma$	$x(D)$ \triangleright find the most similar trial i
5:	predicted performance $g = Z[i]$	
6:	rank percentage $q = get_rank$	$x_{percentage}(Z,g)$

7: **Return:** (q > s)

- Network: Only one dense layer
- Dataset: MNIST
- Optimizer: Stochastic gradient descent
- Benchmark: Random search

Hyperparameter List				
Hyperparameter Name	Data Type	Range		
Learning Rate	Float Number	[0, 1]		
Momentum	Float Number	[0, 1]		
Decay	Float Number	[0, 0.5]		
Batch Size	Integer	{32, 64, 96, 144, 192, 288, 376, 512}		
Epochs	Integer	{3, 4, 5, 6}		

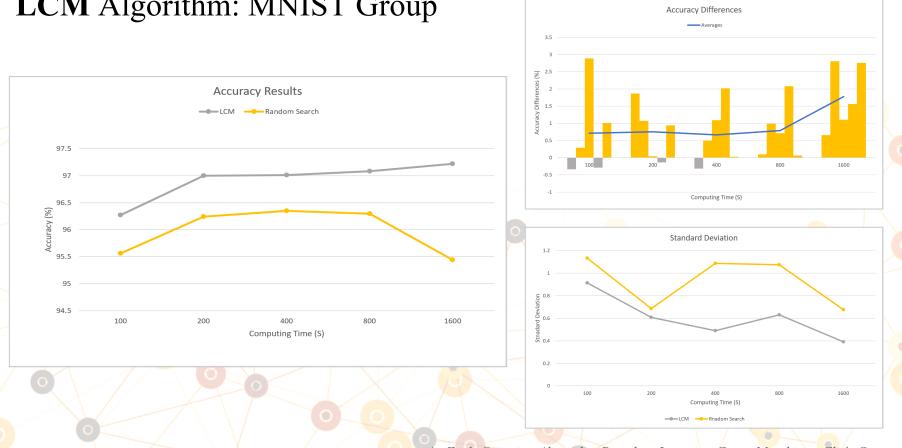
• Given a fixed number of trials, we compared two algorithms' computing time and best performances. The same experiments are repeated 9 times.

Name	Trials	Computing Time (S)	Best Performance (%)
LCM	100	778.50	97.10
Random	100	3657.75	97.41

Remark: In 5 of 9 experiments, these two algorithms got the same optimal hyperparameters.

Given fixed computing time, we compared two algorithms' best performances.
 The same experiments are repeated 5 times.

Computing time (s)	100	200	400	800	1600
LCM	96.274	96.996	97.01	97.082	97.22
Random	95.562	96.24	96.346	96.294	95.44



Hyperparameter List		
Hyperparameter Name	Data Type	Range
Learning Rate	Float Number	[0.001, 0.01]
Beta_1	Float Number	[0.85, 0.95]
Beta_2	Float Number	[0.985, 0.995]
epsilon	Float Number	{1e-07, 1e-06, 1e-08, 5e-07, 5e-06}
Batch Size	Integer	$\{32, 64, 96, 144, 192, 288, 376, 512\}$
Epochs	Integer	$\{10, 15, 20, 25, 30, 35, 40\}$
Kernel Size of 1st CNN	Integer	{2, 3, 4, 5}
Strides of 1st CNN	Integer	{1, 2}
Dropout After 1st CNN	Float Number	$\{0.1, 0.2, 0.3, 0.4, 0.5\}$
Kernel Size of 2nd CNN	Integer	{2, 3, 4, 5}
Strides of 2nd CNN	Integer	{1, 2}
Dropout After 2nd CNN	Float Number	$\{0.1, 0.2, 0.3, 0.4, 0.5\}$
Kernel Size of 3rd CNN	Integer	{2, 3, 4}
Strides of 3rd CNN	Integer	{1, 2}
Kernel Size of 4th CNN	Integer	{2, 3, 4}
Strides of 4th CNN	Integer	{1, 2}
Number of Dense Layers	Integer	{1, 2, 3}
After CNN		
Dropout After Dense	Float Number	$\{0.1, 0.2, 0.3, 0.4, 0.5\}$

• Network: Four CNN layers and

several dense layers

- Dataset: CIFAR10
- **Optimizer:** Adam
- Benchmark: Random search

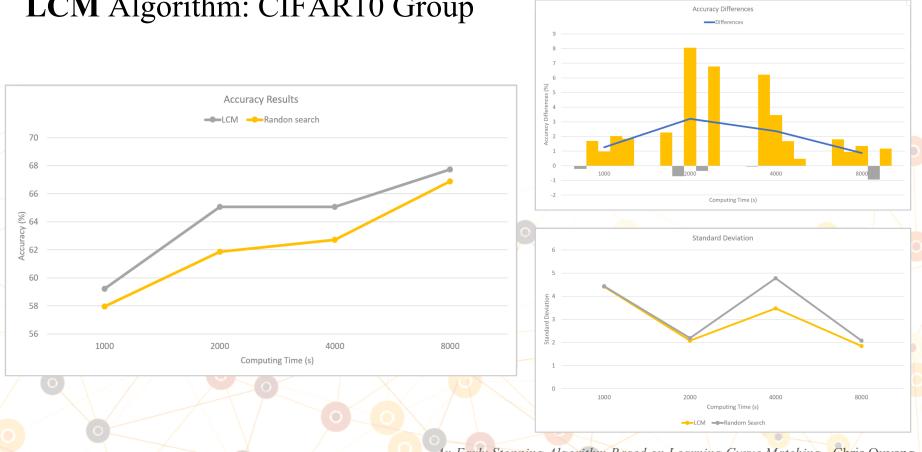
 Given a fixed number of trials, we compared two algorithms' computing time and best performances. The same experiments are repeated 12 times.

	Name	Trials	Computer Time (S)	Best Performance (%)
	LCM o	100	8069.08	67.05
	Random	100	26498.00	67.26
-				

Remark: in 7 of 12 experiments, two algorithms got the same optimal hyperparameters.

Given fixed computing time, we compared two algorithms' best performances.
 The same experiments are repeated 5 times.

Computing time (s)	1000	2000	4000	8000
LCM	59.23	65.06	65.07	67.74
Random	57.96	61.86	62.72	66.88

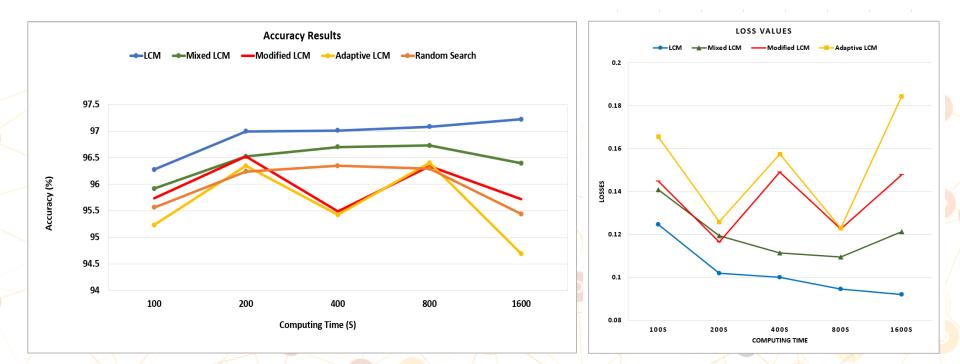


LCM Algorithm: Further Discussion

- Neutral Network Design
- Parallel Programming
- New Combinations
- 'Ultraparameters'

Algorithm 3 Asynchronous Learning Curve N 1: Input: number of configurations n, early-	stopping rate s, split rate r, set of checkpoints C, set of accumulating
points A and distance metric d	
-	ter_configuration_generator(n), performance list $Z =$
empty list [], learning curve list $X = empty$	
3: while free worker do	· []
4: $\theta = \text{get_new_one}(T)$	▷ Return a new configuration for training.
5: check trigger = get_check_trigger	er()
6: for every check point $p \in C$ do	
7: learning curve $\gamma = update_lc(\theta)$	$(p, p) $ \triangleright Update the learning curve until meeting the checkpoint p .
8: send_to_supervisor(γ)	
9: stop_training_trigger = receive.	from_supervisor()
10: $z = \text{qet_final_performance}(\theta)$	
II: send_to_supervisor(γ, z)	
12: for supervisor worker do	
13: for $\gamma = \text{receive_from_worker}($	do
4: trigger = $\operatorname{check}(Y, \gamma, d, s)$	▷ This function refers to Algorithm 2.
 send_to_worker(trigger) 	· And Interform refers to Augoritania 2.
	() d a
16: for $\gamma, z = \text{receive_from_worker}$	() do
17: $X, Z = update(X, Z, \gamma, z)$	1
18: check trigger = $[length(Z) > n *$	<i>r</i>]

LCM Algorithm: Other Work



Population Based Training

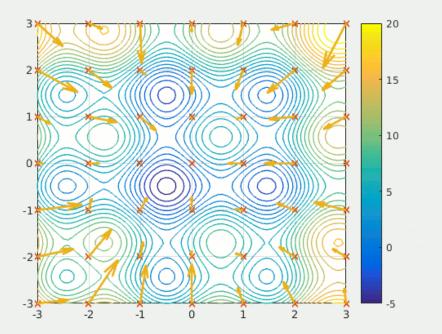
with MagmaDNN

PBT: Background

What is Population Based Training
 (PBT)?

PBT is an evolutionary hyperparameter optimization algorithm.

Evolutionary optimization algorithm: use natural models to inspire a particular approach to traversing a search space to find the minimum of an objective function. One classic case is the Particle Swarm Optimization algorithm, inspired by the swarming behavior of bees.



Particle Swarm Optimization

wikimedia

PBT: Background

• What are the benefits of PBT?

PBT outperforms the standard hyperparameter tuning benchmarks. These benchmark algorithms, **Grid Search and Random Search**, each have their own limitations, which PBT overcomes.

- Why should we implement it on MagmaDNN?
 - MagmaDNN is engineered for high performance computing on large distributed systems.
 - The current standard implementation (Ray-Tune: shared memory model) has a scalability bottleneck.

How does the PBT Algorithm work?

- Population Model
- Stochasticity
- Exploit / Explore
- Early Stopping
- Evolution
- Adaptive Hyperparameter Scheduling

How does the PBT Algorithm work?

- Population Model
- Stochasticity
- Exploit / Explore
- Early Stopping
- Evolution
- Adaptive Hyperparameter Scheduling

Step 1

Initialize Networks Random Weights Random Hyperparameters

How does the PBT Algorithm work?

- Population Model
- Stochasticity
- Exploit / Explore
- Early Stopping
- Evolution
- Adaptive Hyperparameter Scheduling

Step 2

Training Period Networks optimize weights in the usual way (SGD, ADAM, etc.)

How does the PBT Algorithm work?

- Population Model
- Stochasticity
- Exploit / Explore
- Early Stopping
- Evolution
- Adaptive Hyperparameter Scheduling

Step 3

Rank Fitness

accuracy, loss or other measure determines most and least fit

Population Based Training with MagmaDNN

Image from arcfertility.com

How does the PBT Algorithm work?

- Population Model
- Stochasticity
- Exploit / Explore
- Early Stopping
- Evolution
- Adaptive Hyperparameter Scheduling

Exploit Copy the weights and hyperparameters from the most fit to the least

How does the PBT Algorithm work?

- Population Model
- Stochasticity
- Exploit / Explore
- Early Stopping
- Evolution
- Adaptive Hyperparameter Scheduling

Explore Perturb the updated hyperparameters

How does the PBT Algorithm work?

- Population Model
- Stochasticity
- Exploit / Explore
- Early Stopping
- Evolution
- Adaptive Hyperparameter Scheduling

Repeat

Train -> Exploit -> Explore process until desired convergence

How does the PBT Algorithm work?

- Population Model
- Stochasticity
- Exploit / Explore
- Early Stopping
- Evolution
- Adaptive Hyperparameter Scheduling

End Result: Optimized networks with optimized hyperparameter schedules

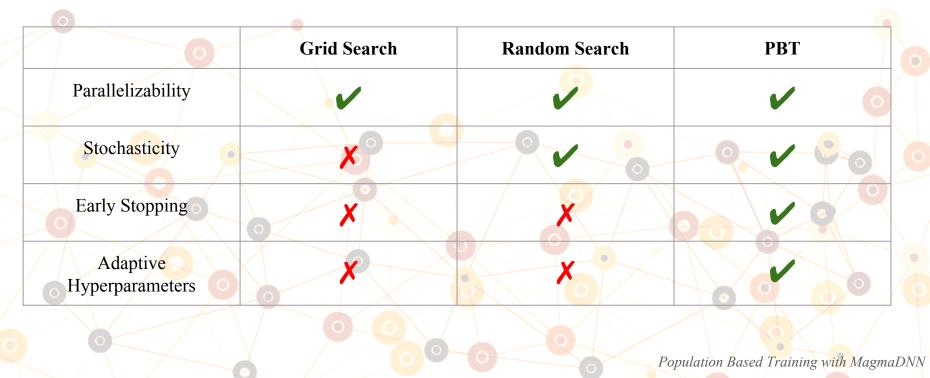
How does the PBT Algorithm work?

GAN population development

FuN population development

4.2 4.5 4.8 5.1 5.4 5.7 6.0 6.3 6.6 Inception Score 1000 2000 3000 4000 5000 6000 7000 8000 9000 Cumulative Expected Reward

Does PBT's functionality improve on the benchmark algorithms?



• Data: MNIST

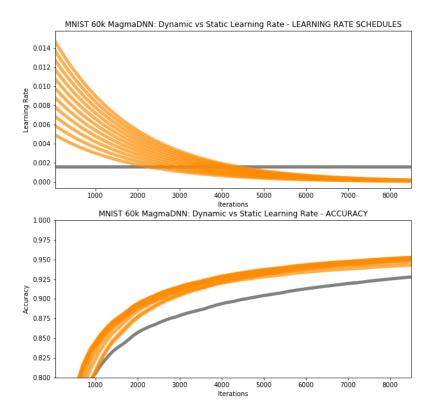
- 60k images of handwritten digits 0-9
- 256 greyscale pixels per image
- 10 categories (0-9)

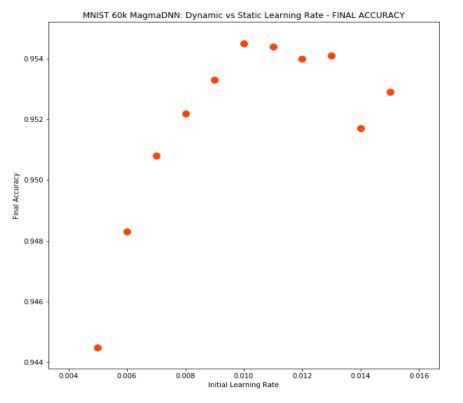
Network Backend: MagmaDNN

- Network Structure: In -> FCB -> Sig -> FCB -> Sig -> FCB -> Out
- •• Weight Optimizer: Stochastic Gradient Descent
- Number of Epochs = 5
- Batch Size = 32

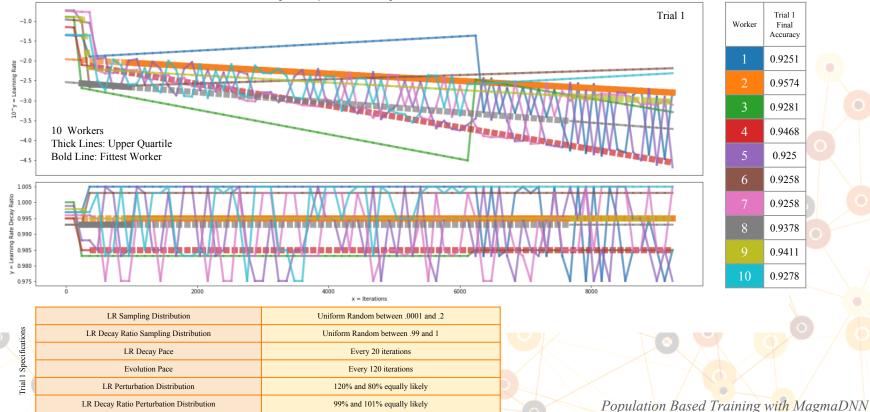
Communication Backend: MPI

*FCB := Fully Connected Layer with Bias *Sig := Sigmoid

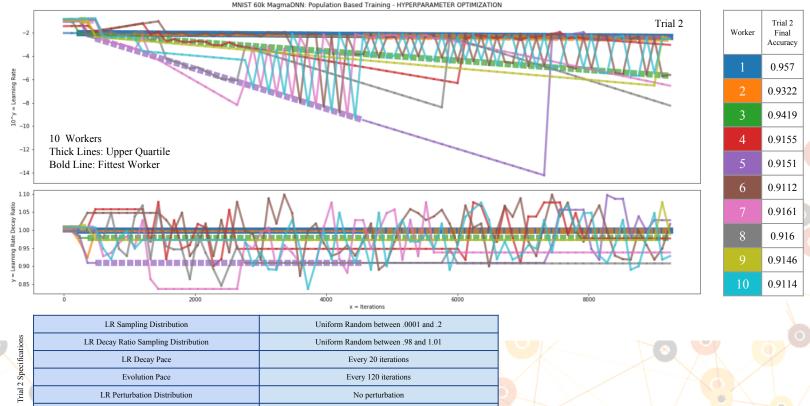




MNIST 60k MagmaDNN: Population Based Training - HYPERPARAMETER OPTIMIZATION



LR Decay Ratio Perturbation Distribution



Uniform Random between 90% and 110%

Conclusions

- Dynamic and adaptive learning rate
 optimization, such as that deployed in our MagmaDNN PBT implementation, improves the convergence of neural networks.
- Early stopping hyperparameter tuning algorithms, such as LCM, can compete with standard benchmarks like Random Search.

Future Work

- Program more custom MagmaDNN classes to explore the tuning of Convolutional Neural Network hyperparameters.
- Implement LCM using the MagmaDNN framework.
- Complete an implementation of MagmaDNN PBT utilizing OpenDIEL's distributed workflow system.

Thanks for listening!

-The Hyperparameter Team

 Acknowledgements: National Science Foundation, Joint Institute of Computational Sciences (UT-ORNL), Extreme Science and Engineering Discovery Environment (XSEDE), BP HPC Team.
 References: Bergstra and Bengio, *Random Search for Hyperparameter* Optimization, 2012; Goodfellow et al, Deep Learning, 2016; Jaderberg et al, Population Based Training of Neural Networks, 2017.

