MagmaDNN Core Development and Applications

Daniel Nichols

University of Tennessee

Sedrick Keh

Hong Kong University of Science and Technology

Kam Fai Chan

Chinese University of Hong Kong

Mentors: Kwai Wong, Stan Tomov, Junqi Yin, Ying Wai Li, Markus Eisenbach, Max Lupo Pasini

What led to the recent emergence of deep learning?

Existing Deep Learning Frameworks

What else can we add to this space?

Scalability

What happens as we increase the number of data / layers / parameters?

Flexibility

What if I want to add my own feature / model / optimizer / loss function?

Speed and Efficiency

How do we ensure faster training times?

MagmaDNN

What is MagmaDNN?

MagmaDNN is a **modularized** deep learning framework that is optimized for **parallel computation and distributed training** on GPUs. It is built around the **MAGMA linear algebra library and CuDNN** to accelerate some deep learning-related computations.

Current Features

- Basic neural network features
 - Forward and backward propagation
- CNN support
 - Convolution, Pooling
 - Dropout, Batch Normalization
- Basic Graph convolution
- Various Optimizers
 - SGD, Adam, AdaGrad, RMSProp

MagmaDNN Parallelism

MagmaDNN Benchmarks

MNIST MLP Time Comparison

Profiled on Nyidia 1050 Ti

Tensor Reductions in MagmaDNN

Data collected on P100 GPU

In Progress

- Distributed Training
- Further optimization
 - Better compute graph optimization
 - Better memory management
- RNN/LSTM support
- Transfer learning
- Large model (e.g. ResNet)
- Hyperparameter optimization
- User-friendly interface

MagmaDNN Applications: Computational Materials Science

Ising Model on Lattice Structure

- Particles (e.g. dipoles) stack in certain structure
- Each particle has a spin, upward/downward
 - Denoted as +1 or -1
- Each particle interacts only with neighbours
 - Interaction strength depends on location and spins
- Physical properties determined by their interactions
 - o e.g. heat capacity, magnetic susceptibility
- Similar model also exists in neuroscience

Simple illustration of Ising model on 2D plane

Problem: Computing the Hamiltonian

• An important quantity, Hamiltonian, is related to local configurations

$$H = -\sum_{(i,j)} J_{ij}\sigma_i\sigma_j$$

- Need to compute for large number of configurations
- Structure can be highly irregular (e.g. different neighbourhoods)
- Good and basic example for problems in material science

Idea

- Use Graph Convolutional Network (GCN) on lattice
 - Can capture local features on irregular graph
- For benchmark, Compare with usual CNN on 2D grid
- Implemented in MagmaDNN
 - o Customizable, Efficient, Open source

Comparing CNN and GCN

- Generate samples: 8x8 2D planar grid, periodic boundary, uniform interaction strength
- 2. Compute Hamiltonian of samples directly
- 3. Use CNN to learn the Hamiltonian
- 4. Use same model but replace CNN with GCN

Result

Trained on 1.76M training samples, 20 epochs, 315k testing samples

	Training		Testing	
	MAE	RMSE	MAE	RMSE
CNN	2.98	3.93	2.98	3.93
GCN	5.77	7.75	5.77	7.77

MAE: Mean Absolute Error, RMSE: Root-Mean-Square Error

Converge slower than CNN, capable to handle general graphs

→ Not a bad substitute for regular convolution on irregular structures
All these results are obtained with MagmaDNN

MagmaDNN Applications: Computational Microscopy

Computational

Microscopy

Use of numerical approaches to measure and analyze images on a very small scale.

Crystallographic Space Groups

- Every material has a corresponding crystal structure.
- There are 230 possible symmetric space groups.

Crystal Lattice Structure

Crystallographic Space Groups

Crystallographic Space Groups

We use deep learning!

Accuracy: 11%

We use deep learning!

Consider:

Accuracy: 10%

There is a **degradation** problem.

Consider:

ResNet^[1]

Shortcut connections

ResNet-34

How can MagmaDNN be used in this task?

- Very flexible, easy to build custom models
- 2D Convolution, Batch Normalization, Pooling, Dropout
- Shortcut connections can be implemented using the addition operation.

How can MagmaDNN be used in this task?

Accelerated GPU Computations

Use MAGMA for linear algebra routines, CuDNN for operations like convolutions

Dynamic Memory Manager

Define its own custom memory manager similar to CUDA's

Data and Model Parallelism

Support MPI capabilities

Challenges:

- Many output classes (230)
- Data imbalance

MagmaDNN scales well

On ResNet 18 benchmark (on 1050 GPU card):

- TensorFlow:726 seconds per epoch
- MagmaDNN:195 seconds per epoch

Time vs iterations graph

Thank you!

MagmaDNN v1.0 is available at

https://bitbucket.org/icl/magmadnn/