
MagmaDNN Core Development
and Applications

Daniel Nichols
University of Tennessee

Sedrick Keh
Hong Kong University of
Science and Technology

Kam Fai Chan
Chinese University of
Hong Kong

Mentors: Kwai Wong, Stan Tomov, Junqi Yin, Ying Wai Li, Markus Eisenbach, Max Lupo Pasini

What led to the recent emergence of
deep learning?

Improved computing
capabilities

More available data

Existing Deep Learning Frameworks

What else can we add to this space?

Scalability
What happens as we increase the number of data / layers / parameters?

Flexibility
What if I want to add my own feature / model / optimizer / loss function?

Speed and Efficiency
How do we ensure faster training times?

MagmaDNN

What is MagmaDNN?

MagmaDNN is a modularized deep learning
framework that is optimized for parallel computation
and distributed training on GPUs. It is built around
the MAGMA linear algebra library and CuDNN to
accelerate some deep learning-related computations.

● Basic neural network features
○ Forward and backward propagation

● CNN support
○ Convolution, Pooling
○ Dropout, Batch Normalization

● Basic Graph convolution
● Various Optimizers

○ SGD, Adam, AdaGrad, RMSProp

Current Features

MagmaDNN Parallelism

MagmaDNN Benchmarks

● Distributed Training
● Further optimization

○ Better compute graph optimization
○ Better memory management

● RNN/LSTM support
● Transfer learning
● Large model (e.g. ResNet)
● Hyperparameter optimization
● User-friendly interface

In Progress

MagmaDNN Applications:
Computational Materials Science

Ising Model on Lattice Structure
● Particles (e.g. dipoles) stack in certain structure

● Each particle has a spin, upward/downward
○ Denoted as +1 or -1

● Each particle interacts only with neighbours
○ Interaction strength depends on location and spins

● Physical properties determined by their interactions
○ e.g. heat capacity, magnetic susceptibility

● Similar model also exists in neuroscience

+1 +1 -1 +1

-1 -1 +1 -1

+1 -1 -1 +1

+1 -1 +1 +1

Simple illustration of Ising
model on 2D plane

Problem: Computing the Hamiltonian

● An important quantity, Hamiltonian, is related to local configurations

● Need to compute for large number of configurations

● Structure can be highly irregular (e.g. different neighbourhoods)

● Good and basic example for problems in material science

Idea

● Use Graph Convolutional Network (GCN) on lattice
○ Can capture local features on irregular graph

● For benchmark, Compare with usual CNN on 2D grid

● Implemented in MagmaDNN
○ Customizable, Efficient, Open source

Signal

Frequency

Intensity

Frequency

Intensity

Convoluted signal

Convolution

Transform Inverse
Transform

Comparing CNN and GCN

Input Convolution, 8 channels
CNN: 4x4, periodic paddings
GCN: Kipf & Welling

Flatten Dense, 32 Dense, 32 Dense, 1 Output

1. Generate samples: 8x8 2D planar grid, periodic boundary,
uniform interaction strength

2. Compute Hamiltonian of samples directly

3. Use CNN to learn the Hamiltonian

4. Use same model but replace CNN with GCN

Result
Trained on 1.76M training samples, 20 epochs, 315k testing samples

Training Testing

MAE RMSE MAE RMSE

CNN 2.98 3.93 2.98 3.93

GCN 5.77 7.75 5.77 7.77

Converge slower than CNN, capable to handle general graphs
→ Not a bad substitute for regular convolution on irregular structures

All these results are obtained with MagmaDNN

MAE: Mean Absolute Error, RMSE: Root-Mean-Square Error

MagmaDNN Applications:
Computational Microscopy

Computational

Microscopy

Use of numerical
approaches to measure
and analyze images on a
very small scale.

Crystallographic Space Groups

Crystal Lattice Structure

● Every material has a
corresponding crystal structure.

● There are 230 possible symmetric
space groups.

Crystallographic Space Groups

Crystal Lattice Structure CBED Images

Convergent
Beam
Electron
Diffraction

Crystallographic Space Groups

Crystal Lattice Structure CBED Images

Reverse ???

We use deep learning!

Input
(3, 512, 512)

Conv1
(2,2) filter

(1,1) stride
64 channels

MaxPool1
(2,2) stride

Conv2
(2,2) filter

(1,1) stride
16 channels

MaxPool2
(2,2) stride

Flatten Dense
(256)

Dense
(231)

Output

Accuracy: 11%

We use deep learning!

Input
(3, 512, 512)

Conv1
(2,2) filter

(1,1) stride
64 channels

MaxPool1
(2,2) stride

Conv2
(2,2) filter

(1,1) stride
16 channels

MaxPool2
(2,2) stride

Flatten Dense
(256)

Dense
(231)

Output

Accuracy: 11%

Consider:

Accuracy: 10%

There is a degradation problem.

Consider:

F

x

y = F(x) y = F(x) + x

ResNet[1]

Shortcut connections

[1] He Zhang Ren Sun, “Deep Residual Learning for Image Recognition” arxiv:1512.03385, Dec 2015

ResNet-34

How can MagmaDNN be used in this task?

● Very flexible, easy to build custom models

● 2D Convolution, Batch Normalization, Pooling, Dropout

● Shortcut connections can be implemented using the

addition operation.

How can MagmaDNN be used in this task?

Accelerated GPU Computations
Use MAGMA for linear algebra routines, CuDNN for operations like convolutions

Dynamic Memory Manager
Define its own custom memory manager similar to CUDA’s

Data and Model Parallelism
Support MPI capabilities

Conv: (3x3), 16

Conv: (3x3), 16
ReLu

ReLu

Conv: (3x3), 32

Conv: (3x3), 32
ReLu

ReLu

Downsampling

Flatten

Dense: (230)

Conv: (3x3), 32

Pooling: (2x2)

(x2)
Conv: (3x3), 64

Conv: (3x3), 64
ReLu

ReLu

Conv: (3x3), 128

Conv: (3x3), 128
ReLu

ReLu

Downsampling

Downsampling

ResNet 18

(x2)

(x2)

(x2)

Accuracy: 16%

Challenges:

● Many output classes (230)

● Data imbalance

MagmaDNN scales well

On ResNet 18 benchmark (on 1050
GPU card):

- TensorFlow:
726 seconds per epoch

- MagmaDNN:
195 seconds per epoch

Time vs iterations graph

Thank you!
MagmaDNN v1.0 is available at
https://bitbucket.org/icl/magmadnn/

https://bitbucket.org/icl/magmadnn/

