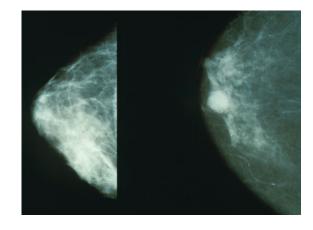
Medical Image Processing with Deep Learning ----Mammograms Classification and Automatic Tumor detection


> Members: Yijie Jin (CityU), Yifan Zheng (CUHK) Mentors: Dr. Kwai Wong, Dr. Raymond Chan

Background

- Breast cancer is the second leading cause of cancer-related death among women in the United States.
- Roughly one eighth of women in the United States will develop breast cancer during their lifetimes.
- Five-year relative survival rates can be up to 3-4 times higher for cancers detected at an early stage versus at a later stage.

Mammography

- Mammography is the most common breast screening technology. It is the process of using low-energy X-rays to examine the human breast for diagnosis and screening. It is the most reliable method for screening breast abnormalities before they become clinically palpable.
- Reading mammograms is a tedious and error-prone process, and not all radiologists achieve uniformly high levels of accuracy.

Normal

Malignant

Goals

- Classify mammograms into three classes, normal, benign and malignant (CNNI-BCC and VGG16)
- Automatically detect the tumor without prior information of the presence of a cancerous lesion (IDBLL)

Challenges

- Hard to find a database due to privacy reasons -> a public database (MIAS)
- Mammograms usually have a low contrast -> Remove black background
- "needle in a haystack" nature of mammogram classification -> Cut the images into small patches

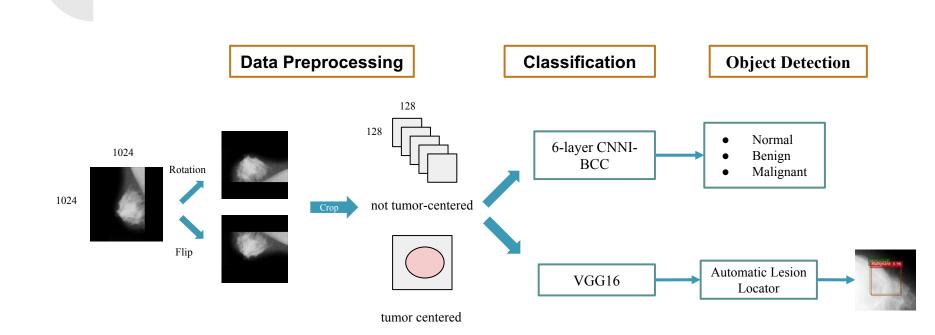
Dataset and Data Preprocessing

Dataset: mini-MIAS database of mammograms

• 322 images in total

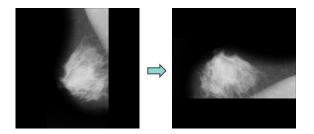
Data Augmentation:

- Rotation (by 90, 180, 270 degrees respectively)
- Flip (vertically)
- Equally Sampling (1024×1024 -> 128×128 and 1024×1024 -> 256×256)
- Sample with overlap

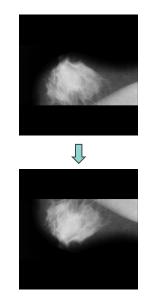

Data Cleansing:

• Remove the image patches with black background

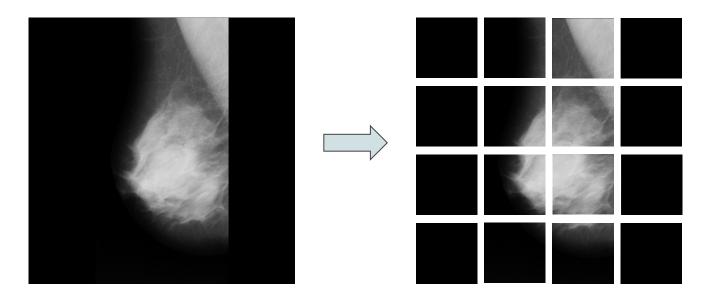
Dataset - mini-MIAS


- Labelled
- Have information about the coordinates of tumor center
- Have information about the radius of the tumor

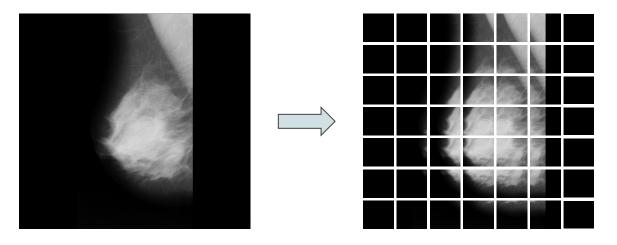
Labelled data : G CIRC B 595 864 68	
Data explanation:	
G = Fatty – Glandular	
CIRC = Well-defined/ circumscribed masses	
B= Benign	Will for the
(595, 864) = (X, Y) coordinate	
68 pixels = Radius from center	- Aller



Procedure

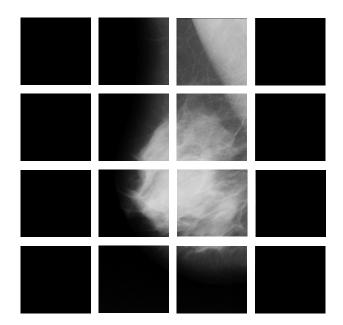

Data Augmentation ---- Flip/Rotation

Rotation clockwisely by 90 degrees

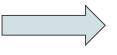

Flip vertically **Data Augmentation** ---- Equally Sampling

1024×1024

Data Augmentation ---- Sample with Overlap

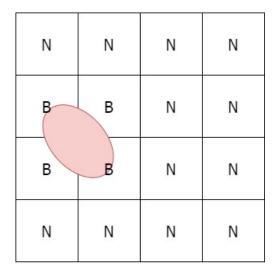


1024×1024

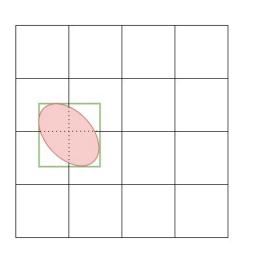

256×256

- Sample the image patches every 128 pixels.
- 1 -> 49

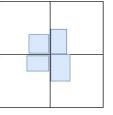
Data Cleansing ---- Remove images with black background

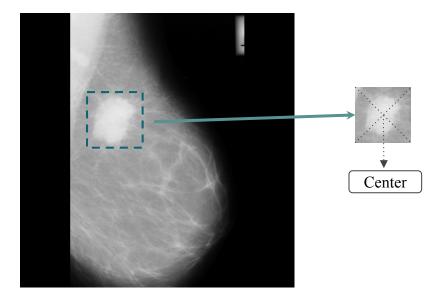


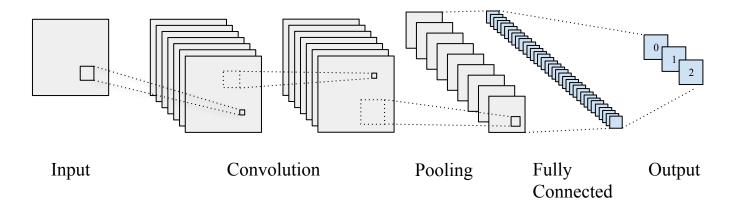
Relabel the Image Patches


В	В	В	В
В	В	В	В
В	В	В	в
В	В	В	В

After


Problems

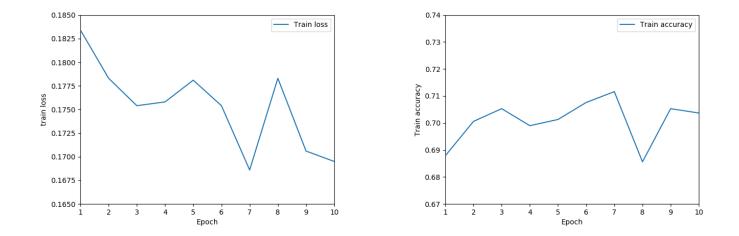



- Tumors are separated
- Hard to put the small patches together

Data Augmentation ----Tumor-centered Sampling

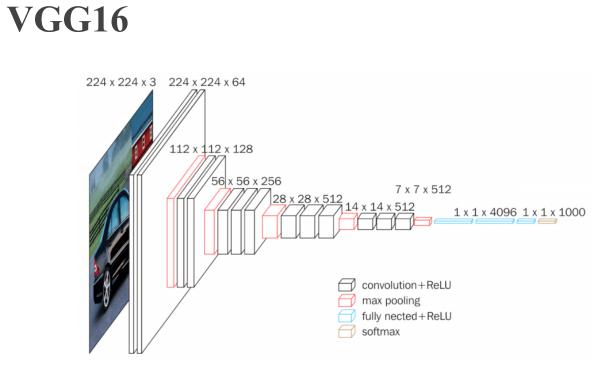
- 1024×1024 -> 256×256
- Tumor center at the image center

Convolutional Neural Network Improvement for Breast Cancer Classification (CNNI-BCC)

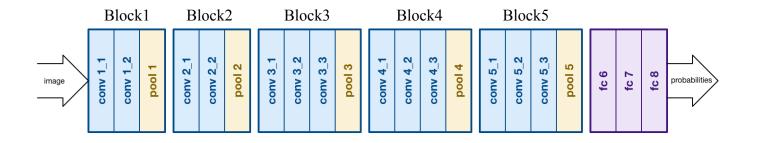


- 30 layers (28 convolutional layers+1 pooling layer+1 fully connected layer)
- Implemented in Keras with Tensorflow backend

Experiments


Layer (type)	Output Shape	Param #
conv2d_1 (Conv2D)	(None, 64, 64, 32)	320
depthwise_conv2d_1 (DepthwiseConv2D)	(None, 64, 64, 32) 32800	
conv2d_2 (Conv2D)	(None, 64, 64, 64)	2112
depthwise_conv2d_2 (DepthwiseConv2D)	(None, 32, 32, 64) 26220	8
average_pooling2d_1 (AveragePooling2D)	(None, 8, 8, 64) 0	
flatten_1 (Flatten)	(None, 4096)	0
dense 1 (Dense)	(None 3)	12291

Results



The loss on the test set is: 0.14544324301610326

The accuracy on the test set is: 0.7324840809888901

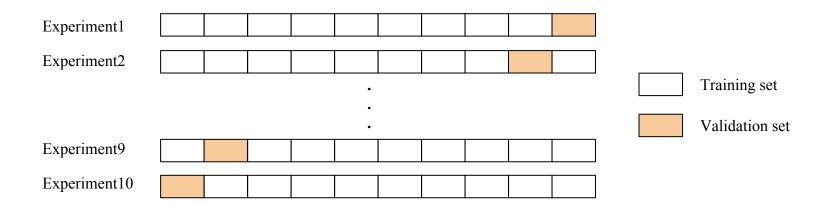
VGG16 Architecture

- 5 blocks
- Convolutional Layer+Pooling Layer in each block
- 3 fully connected layer and softmax function

Data Shuffling

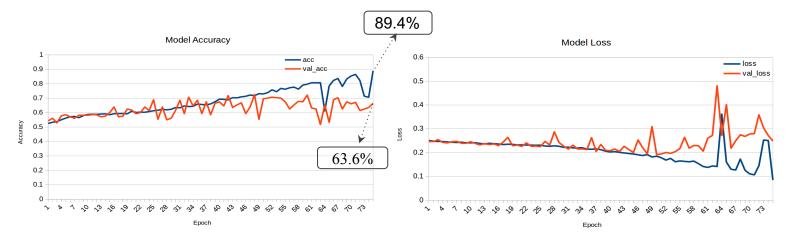
Normal	Benign	Malignant		
Load the data in sequence				
0.9 0.1				
G 1.	· · · · · · · · · · · · · · · · · · ·			

Split training and validation set

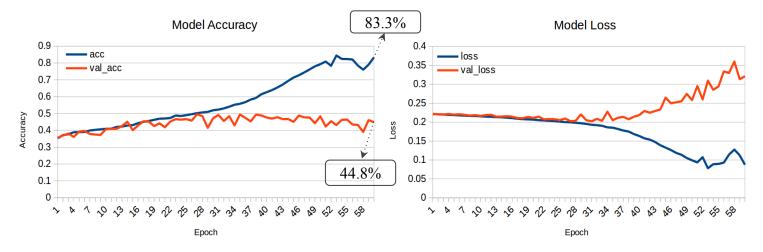

BMBMNMNMBMNMBNNMBMN.....NMNMBNBNBNMBMNMBNMB

After shuffling

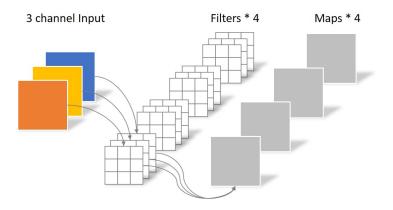
Problems:


- The training data is not general.
- The neural network cannot enough features of malignant cases.

Cross-Validation


- 10-Fold Cross-validation
- Train 10 different models with different validation sets.

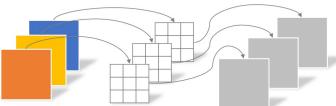
Experiments ---- Classify mammograms into 2 categories


- Training set: 2520 image patches (128×128)
- Epoch number: 80
- Batch size: 32

Experiments ---- Classify mammograms into 3 categories

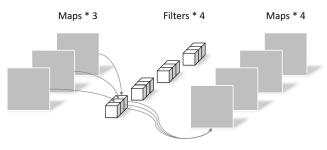
- Training set: 11340 image patches
- Epoch number: 60
- Batch size: 32

Normal Convolutaion and Separable Convolution



Normal Convolution

- Filter number: 4
- Filter size: 3×3
- Channel number: 3
- Total number of parameters: $4 \times 3 \times 3 \times 3 = 108$

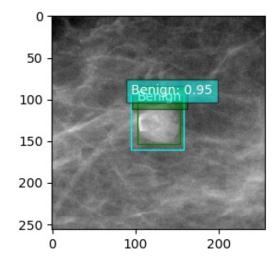

Normal Convolution and Separable Convolution

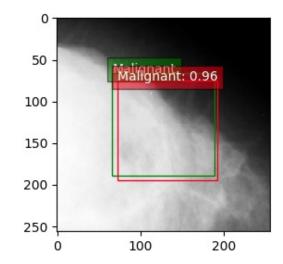
Depthwise Convolution 3 channel Input Filters * 3 Maps * 3

- Filter number: 3
- Filter size: 3×3
- Channel number: 3
- Number of parameters: $3 \times 3 \times 3 = 27$

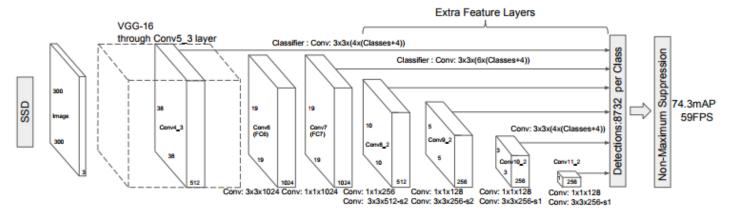
Pointwise Convolution

- Filter number: 4
- Filter size: 1×1
- Channel number: 3
- Number of parameters: $1 \times 1 \times 3 \times 4 = 12$

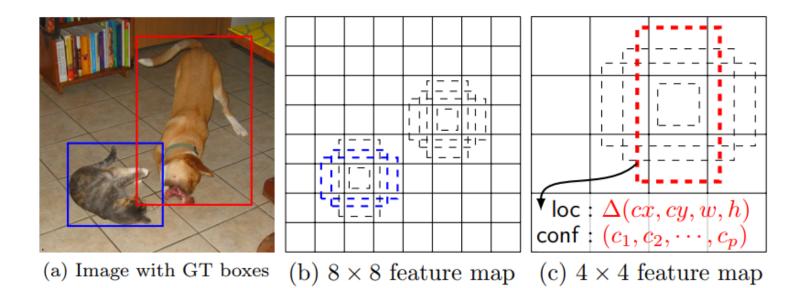

Total number of parameters: 27 + 12 = 39


Comparison between Normal Convolution and Separable Convolution

	Number of Parameters in 1 Layer	Total Parameters
Conv2D	1,792	23,715,730
SeparableConv2D	283	4,820,525


• Keras implementation: SeparableConv2D

Interactive Detection Based Lesion Locator (IDBLL)


Structure of Single Shot MultiBox Detector (SSD)

Base Network for classification

- + Multi-scale feature maps for detection
- + Convolutional predictors for detection: multiple classes confidences
- + Default boxes and aspect ratios: localization

Prior Box & Objective Loss Function

$$L(x,c,l,g) = \frac{1}{N} (L_{conf}(x,c) + \alpha L_{loc}(x,l,g))$$

Training Process

Input images

Generate feature maps of different scales

Generate anchor boxes for each feature map

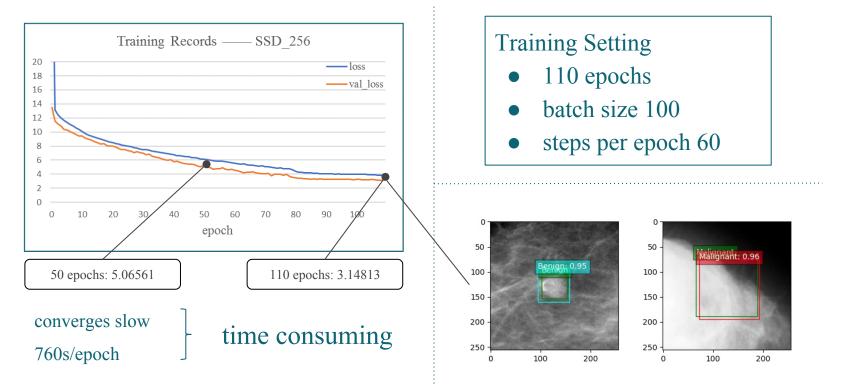
Determine positive or negative for each anchor box

Train the parameters of the layer for classification

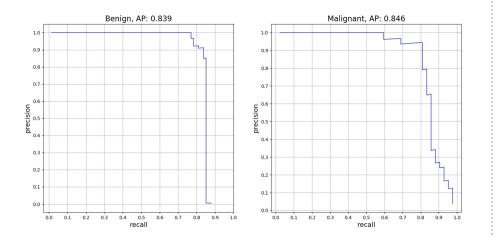
Train the parameters of the layer for localization

CPU & GPU We Used

- 128GB
- 28 cores
- 8TB on-node storage


GPU

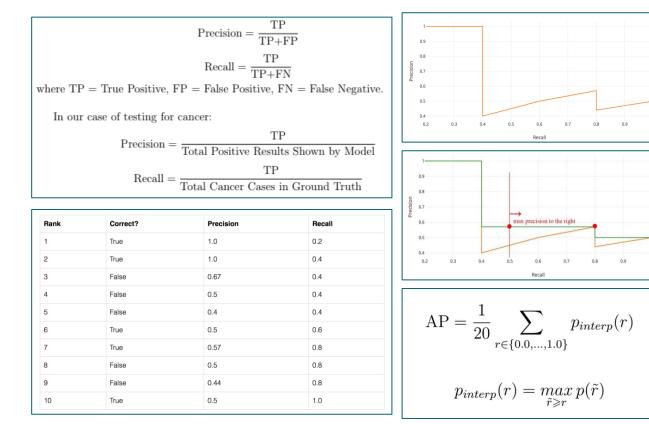
- 2 NVIDIA Tesla K80
 - Kepler architecture
- 12GB/GPU
- 48GB total/node


GPU

- 8 NVIDIA Volta V100
- 16GB/GPU
- 128GB total/node

Experiment A ---- Best Result

Experiment A ---- Best Result



Benign AP	0.839
Malignant AP	0.846
mAP	0.842

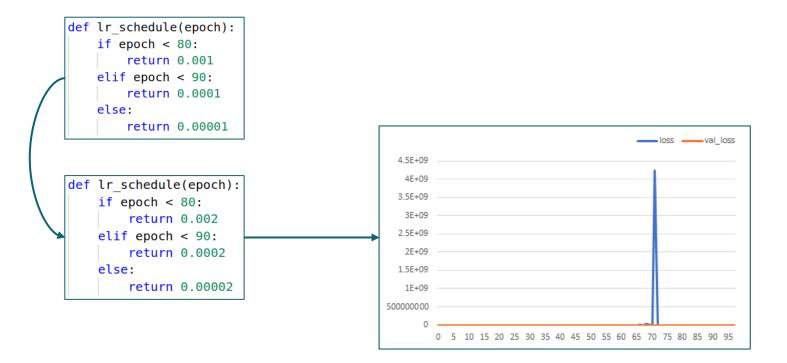

Method	mAP	FPS	batch size	# Boxes	Input resolution
Faster R-CNN (VGG16)	73.2	7	1	~ 6000	$\sim 1000 \times 600$
Fast YOLO	52.7	155	1	98	448×448
YOLO (VGG16)	66.4	21	1	98	448×448
SSD300	74.3	46	1	8732	300×300
SSD512	76.8	19	1	24564	512×512
SSD300	74.3	59	8	8732	300×300
SSD512	76.8	22	8	24564	512×512

Table 7: **Results on Pascal VOC2007 test.** SSD300 is the only real-time detection method that can achieve above 70% mAP. By using a larger input image, SSD512 outperforms all methods on accuracy while maintaining a close to real-time speed.

Precision-Recall Curve & mAP calculation

Experiment B ---- Increasing Learning Rate

Experiment C ---- Enlarging Batch Size

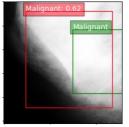
Usually, enlarging batch size:

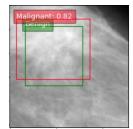
accelerate processing speed

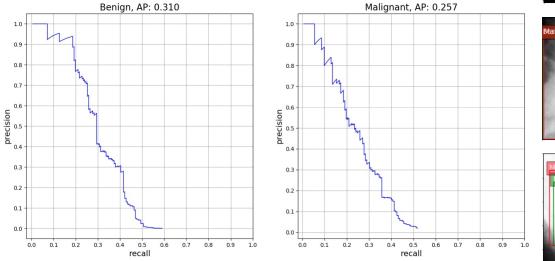
determine the direction of descent more accurately

However, our test shows:

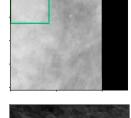
Batch Size	Steps per Epoch	Epoch	Validation Loss	Speed
300	2	300	9.24585	87s/epoch
200	3	300	8.64310	80s/epoch
100	60	30	7.024	760s/epoch

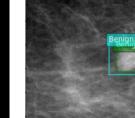

Experiment D ---- Using Separable Convolution

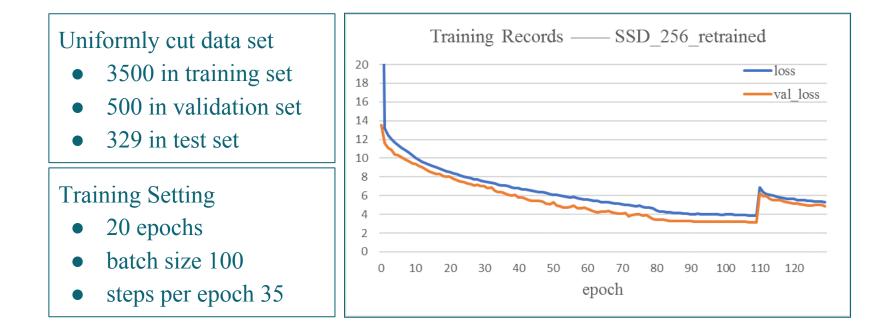

Batch Size	Steps per Epoch	Epoch	Validation Loss	Speed
100	6	150	4.36554	245s/epoch
200	3	150	4.80492	245s/epoch
300	2	150	5.03458	245s/epoch

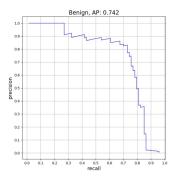

- Take more time to train per epoch
- Converge faster than Conv2D-model in terms of epochs
- Converge slower than Conv2D-model interms of real time

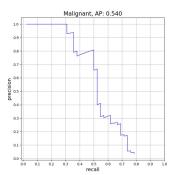
Experiment E ----Testing on More General Cases

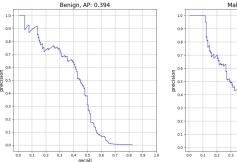

Test on uniformly cut set

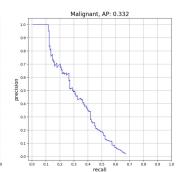









Experiment E (Cont.) ----Retraining on More General Cases



Experiment E (Cont.) ----Retraining on More General Cases

Tumorcenter test set		Uniformly cut test set	
Benign AP	0.742	Benign AP 0.3	
Malignant AP	0.54	Malignant AP	0.332
mAP	0.641	mAP	0.363

Before retraining:

Tumorcenter test set		Uniformly cut test set	
Benign AP	0.839	39 Benign AP	
Malignant AP	0.846	Malignant AP	0.257
mAP	0.842	mAP	0.284

Related Work

- **P Xi. et.al. IEEE MeMeA 2018:** VGGNet for classification and ResNet for localizing abnormalities
- **NWu. arXiv:1903.08297:** ResNet-22 for lesion detection and hybrid model for validation
- **TG Debelee. LNICST, volume 244:** PCA for feature dimensionality reduction, KNN for classification, Particle Swarm Optimized Wavelet Neural Network (PSOWNN)

Future Works

- Enhance the contrast of mammograms
- Use ResNet to reduce the training time.
- Use more traditional machine learning method, such as k-nearest neighbors algorithm (KNN), support vector machine for classification
- Use other public database, e.g.: Digital Database for Screening Mammography (DDSM)

References

- 1. Ferlay, J., Héry, C., Autier, P. & Sankaranarayanan, R. (2010). Global burden of breast cancer. *Breast cancer epidemiology*, 1–19, Springer.
- Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C. Y., & Berg, A. C. (2016, October). Ssd: Single shot multibox detector. *European conference on computer vision* (pp. 21-37). Springer, Cham.
- 3. Ting, F. F., Tan, Y. J., & Sim, K. S. (2019). Convolutional neural network improvement for breast cancer classification. *Expert Systems with Applications*, 120, 103-115.
- 4. Separable Convolution. <u>https://yinguobing.com/separable-convolution/</u>
- 5. Breast cancer: Prevention and Control. Retrieved from: https://www.who.int/cancer/detection/breastcancer/en/

Thank you for listening!