MagmaDNN is a neural network library in C++ aiming at optimizing towards heterogeneous architectures, i.e., multi-core CPUs and GPUs. Currently, no implementation of the multi-head attention layer, which is a core component of transformer models, is provided by MagmaDNN library, despite the popularity and significance of transformer models in various tasks including vision tasks such as medical segmentation [1, 2], image recognition [3], semantic segmentation [4], and natural language processing tasks such as machine translation [5].

To bridge the gap, we present an implementation of the multi-head attention layer in MagmaDNN framework. Our implementation improves the prediction loss by 20.41% compared with TensorFlow implementation, despite consuming extra training time (epoch = 1000, learning rate = 10^-3, batch size = 8, input size = [3 x 8 x 8]). Compared with PyTorch implementation, our method also outperforms it by a clear margin in terms of prediction loss.

The multi-head attention can be formulated as follows:

\[
MHA(Q, K, V) = [h_1, \ldots, h_n]W^O
\]

where \(Q, K \) and \(V \) are the query, key and value matrices, \(\alpha \) is a scaling parameter, and all the \(W \)'s are learnable weights.

We conduct pseudo training experiments to compare the average training speed of different implementations for one single batch input of size \([3 \times 4 \times 4], [3 \times 8 \times 8], [3 \times 16 \times 16], [3 \times 32 \times 32]\) (epoch = 3000).

As shown in the figures 3, 4, 5 and 6, our multi-head attention layer has a faster training speed when the input size is \([3 \times 4 \times 4], [3 \times 8 \times 8] \) or \([3 \times 16 \times 16] \), but has a slower training speed when the input size is \([3 \times 32 \times 32] \).

Our contributions can be concluded in two aspects:

(1) We present an implementation of the multi-head attention layer in MagmaDNN framework, making the development of transformer architecture possible for MagmaDNN library.

(2) We compare the performance of our multi-head layer with PyTorch's and TensorFlow's implementations. Compared with them, our layer outperforms them by a clear margin in the best-epoch prediction loss, despite reasonable extra training time for large-scale data.

References

