
MagmaDNN-CNN Research Project
Final Presentation

Spencer Smith
Dept. of Computer Science
University of North Texas

Denton, USA
spencersmith4@my.unt.edu

Chow Tsz Ching
Dept. of Mathematics

Chinese University of Hong Kong
Hong Kong, China

nicolechow08@gmail.com

Edward Karak
Dept. of Mathematics.

Baruch College, City University of New York
New York, USA

edward.karak@baruchmail.cuny.edu

MAGMADNN-CNN Research Project

MagmaDNN: Table of Contents

➢ Project Overview
➢ Background
➢ Implementing U-Net

○ Downsampling
○ Upsampling
○ Transpose Convolution
○ Concat
○ Loss Function

➢ Results of our U-Net
○ ADAM optimizer
○ SGD w/ Momentum optimizer

➢ HDF5
➢ Future Directions
➢ Conclusion

MAGMADNN-CNN Research Project

MagmaDNN: Project Overview

� Initial Research Goals for this Summer:

● Implement a U-Net architecture in MagmaDNN
● Extend I/O functions to handle HDF5 data
● Run Data Challenge #3 on MagmaDNN
● Build a UResNet

10 weeks

introduction / lectures project development

midterm presentation

project development

final presentation

● Unet has many applications in the medical field as well as other fields.
○ Brain image segmentation
○ Liver image segmentation
○ Protein binding site prediction

● Given a labeled training set, a Unet is able to learn how to classify each object.
● After being trained, the model can take an image as input and then perform segmentation to a

high degree of accuracy.

MagmaDNN-CNN Research Project

MagmaDNN: U-Net Background

� Why use a U-Net?

MAGMADNN-CNN Research Project

MAGMADNN: Extend MAGMADNN to run Unet Applications

• A Unet is a neural network used to detect objects in an
image: this is known as image segmentation.

• Identifies objects by downscaling the input image using
convolutions.

• The network picks up on the different objects.
• The image is then upscaled and the pixels are given a

classification based on the identified objects.

MagmaDNN: U-Net Background

� What is a Unet?

● It is done with a combination of convolutions,

batch normalization and relu activation. This

combination is called a convolution block.

● An Encoder block uses two convolution blocks

and a maxpool to perform the downsampling.

● It is standard to adjust the number of Encoder

blocks you need based on the dimensions of

the input images.

� Downsampling in U-Net

MagmaDNN-CNN Research Project

MagmaDNN: Extend MagmaDNN to run CNN ApplicationsMagmaDNN: U-Net Background

� Up-sampling in U-Net

Up-sampling is used in the decoder part of the Unet
architecture. The goal is to transform the down-scaled
input image to its original dimension.

● There are many different ways to implement

Up-sampling in a Unet.
● Nearest-Neighbor, Bi-linear interpolation, and

transposed convolution are all methods of
up-sampling.

MagmaDNN-CNN Research Project

MagmaDNN: U-Net Background

� Up-sampling in U-Net

MagmaDNN-CNN Research Project

MagmaDNN: U-Net Background

Bilinear

Conv2D Transpose

MagmaDNN-CNN Research Project

MagmaDNN: U-Net Background

� Loss Functions for U-Net

• Cross-Entropy Loss is the best loss function for image

segmentation applications; however, it can be modified

to converge prediction results onto the foreground of

the image.

• y
cij

 is a distance calculation based on the nearest

foreground pixel. It is a 2D Gaussian distribution

centered on the nearest foreground pixel.

• This allows for the loss function to be lenient on

background pixels that are relatively close to the

foreground.

MagmaDNN-CNN Research Project

MagmaDNN: Background on HDF5

● HDF5 (Hierarchical Data Format 5) is a format
for storing scalars, matrices and tensors on the
disk.

● It is commonly used in computational sciences.
● MagmaDNN uses this format to store trained

models.
● It is “hierarchical” because the file stores

tensors in a tree structure
○ The tree consists of groups, which contains

zero or more groups or zero or more
datasets. A dataset stores a tensor and its
metadata.

� MagmaDNN I/O Capabilities

MagmaDNN-CNN Research Project

MagmaDNN: U-Net Implementation - Downsampling
Function Template

First Half of the Encoder Second Half of the Encoder

3x3 Convolution + BN + RELU (x2) Dropout (Optional) Max Pooling by 2* (no max pooling on last encoder)

MagmaDNN-CNN Research Project

MagmaDNN: U-Net Implementation - Downsampling

• The number of filters doubles at each EncoderMiniBlock function call.

• The last value in the vector returned from EncoderMiniBlock is the skip connection. Store this
value for later use and then remove it.

MagmaDNN-CNN Research Project

MagmaDNN: U-Net Implementation - Upsampling
Function Template

Upsampling (by 2) + 3x3 Convolution Concat w/ Skip Connection 3x3 Convolution + BN + RELU (x2)

MagmaDNN-CNN Research Project

MagmaDNN: U-Net Implementation - Upsampling

• Unlike the Encoder block calls, where the number of filters doubles, the number of filters in
the decoder gets cut in half at each subsequence Decoder block call.

• The first parameters is just the previous layers output.
• The second parameter is the skip connection from the Encoder.
• The number of Decoder blocks is dependent on the number of Encoder blocks with max

pooling.

MagmaDNN-CNN Research Project

MagmaDNN: U-Net Implementation - Transposed Convolution

The function that gets called in a MagmaDNN program.

• This makes it easy to use as long as you have included MagmaDNN into your project.
• Alot of the parameters have default values, which are specifically set to double to dimensions.

MagmaDNN-CNN Research Project

MagmaDNN: U-Net Implementation - Transposed Convolution

• The goal of a transposed convolution is
to increase the height and width of the
input tensor.

• Unlike in the normal convolution in
MagmaDNN, where there is a cuDNN API
function to calculate the output shape,
we must use our own calculation.

• Explicitly calculating the output shape
can be dangerous because it can cause
problems in later steps.

• So, you must be careful when adjusting
the default parameters of the
transposed convolution function.

MagmaDNN-CNN Research Project

MagmaDNN: U-Net Implementation - Transposed Convolution

Normal Convolution in MagmDNN Transposed Convolution in MagmDNN

● The forward pass of the transposed convolution.
● Notice how we use the cudnnConvolutionBackward

for the normal convolution to perform the forward
pass for the transpose.

● The forward pass of the normal convolution.
● Notice how it just uses the cudnnConvolutionForward

to perform the forward pass, which is standard.

MagmaDNN-CNN Research Project

MagmaDNN: U-Net Implementation - Transposed Convolution

Normal Convolution in MagmDNN Transposed Convolution in MagmDNN

● The gradient calculation of the input tensor for normal
convolution.

● Again, it uses its standard cuDNN function for the
computation.

● The gradient calculation of the input tensor for
transposed convolution.

● Notice how it uses the cudnnConvolutionForward,
which is the forward pass of normal convolution, to
compute the backward pass of the transposed.

● The grad is equivalent to the x in the normal
convolution forward pass, the w is just the weight
tensor.

MagmaDNN-CNN Research Project

MagmaDNN: U-Net Implementation - Transposed Convolution

Normal Convolution in MagmDNN Transposed Convolution in MagmDNN

● The gradient calculation of the filter tensor for normal
convolution.

● This is just the standard cudnn function for normal
convolution

● The gradient calculation of the filter tensor for
transposed convolution.

● Notice how it uses the same function as the normal
convolution to calculate the gradient of the filter.

● The only difference is the parameters. The positions of
grad and x are flipped in the transposed function call.

MagmaDNN-CNN Research Project

MagmaDNN: U-Net Implementation - Transposed Convolution

Transposed Convolution in MagmDNN Transposed Convolution in Keras

MagmaDNN-CNN Research Project

MagmaDNN: U-Net Implementation - Concatenation

� Skip Connections / Concatenation in U-Net

• The skip connection in a U-Net architecture is just a saved layer
from the downsampling part of the network.

• Before max pooling is applied, the layer is stored away for later
use in the up-sampling part.

• This allows for the original structure of the input image to be
preserved through the countless convolutions and transposed
convolutions.

• The skip connection is concatenated with the result of the
transposed convolution, along the channel axis.

● At a certain point, the error increases with network

depth—degradation problem.

● The main advantage is to prevent vanishing gradient

● It allows the neutral network to have an alternative path to

pass on gradient

● It helps U-Net that have a lot blocks of encoder and decoder to

learn effectively

● It can help with the U-Net to upscale back to the original size

after the feature is captured in the encoder part

● Without a proper concat, the output image will only give out

features of the picture instead of the segmented of the image

MagmaDNN-CNN Research Project

MagmaDNN: Extend MagmaDNN to run CNN Applications

� Why do we need concatenation in the decoder?

MagmaDNN-CNN Research Project

MagmaDNN: U-Net Implementation - Concatenation

Credit: https://forums.developer.nvidia.com/t/concatenate-using-cudnn/63553

MagmaDNN-CNN Research Project

MagmaDNN: U-Net Implementation - Loss Function

● Everything for the distance aware cross entropy to work has been implemented; however, the calculation of the
foreground pixel took a very looking time.

● Since the ground truth never changes. A fix to this would be to calculate the closest foreground pixel only once
and store it somewhere, rather than calculating it every time the loss function gets called. This initial calculation
would be slow, but the overall training speed would greatly increase.

● As a temporary fix, since time has ran out, we have just put in a normal cross-entropy calculation in the _eval of
the distawarecrossentropy.

● It seems to work just fine, but the distance aware implementation would be ideal for image segmentation, as it
would allow for the model to focus training on the foreground.

MagmaDNN-CNN Research Project

MagmaDNN: Implementing HDF5

MagmaDNN’s HDF5 library consists of standalone functions
that wrap the C API such as:

● hdf_open: establish connection to HDF file (like
fopen)

● hdf_ds_open: establish connection to dataset in a HDF
file

● hdf_ds_read & hdf_ds_write: read and write to
dataset

Atop these functions is a pair of classes: HDF5 and
HDF5_DataSpace, which refer to the file and
dataspace/dataset, respectively.

� MagmaDNN I/O Implementation

MagmaDNN-CNN Research Project

MagmaDNN: Training Background

� Training parameters in other U-Nets

• From the original U-Net paper, we learnt that the

characteristic of a U-Net is it trains with a small dataset but

with high resolution.

• For the purpose of biomedical image segmentation to identify

problematic cell, it requires 30 512 x 512 images.

• The segmentation takes less than a second on a “recent GPU”

in 2015

MagmaDNN-CNN Research Project

MagmaDNN: Training

� Training parameters in OURs U-Net

• We are using 31 256 x 256 images for the training set and 7

images for the testing set.

• We have trained our U-Net on a Nvidia RTX-3060 with 12GB of

memory.

• Since our training set is so small, we went with a batch size of 1,

which is standard with SGD.

• We have been doing alot of testing with various learning rates.

With Adam we have been staying around 3e-4 and with SGD we

have been staying around 1e-6.

MagmaDNN-CNN Research Project

MagmaDNN: Results of our U-Net using ADAM

After 30 epochs

After 60 epochs

After 90 epochs

● 80/20 training-testing split
● 31 total samples in the training set
● Batch Size: 1
● Learning Rate: 3e-4
● Loss Function = Cross-Entropy

Ground Truth

Sample #1 Sample #2 Sample #3 Sample #4 Sample #5 Sample #6 Sample #7

MagmaDNN-CNN Research Project

MagmaDNN: Results of our U-Net using SGD w/ Momentum

After 30 epochs

After 60 epochs

After 90 epochs

● 80/20 training-testing split
● 31 total samples in the training set
● Batch Size: 1
● Learning Rate: 3e-6
● Momentum = 0.9
● Loss Function = Cross-Entropy

Ground Truth

Sample #1 Sample #2 Sample #3 Sample #4 Sample #5 Sample #6 Sample #7

MagmaDNN-CNN Research Project

MagmaDNN: Comparing Loss of SGD w/ Momentum and ADAM

SGD w/ Momentum
● Batch Size: 1
● Learning Rate: 3e-6
● Momentum = 0.9
● Loss Function = Cross-Entropy

Adam
● Batch Size: 1
● Learning Rate: 3e-4
● Beta1 = 0.9
● Beta2 = 0.999
● Loss Function = Cross-Entropy

MagmaDNN-CNN Research Project

MagmaDNN: Results of our U-Net using SGD / ADAM vs. PyTorch

IoU Dice Pixel

Pytorch model w/
Car dataset

0.705533955 0.536302446 0.405787962

U-Net-like model
w/ full Oxford Pet

Set (7349)

0.924337826 0.2089358 0.480340

Our Model w/ SGD 0.697989235 0.732576941 0.408179616

Our Model w/
ADAM

0.7270899 0.74655103 0.4190377

MagmaDNN-CNN Research Project

MagmaDNN: Results of our U-Net using ADAM vs. PyTorch
Predicted Images from our U-Net Predicted Images from PyTorch

MagmaDNN-CNN Research Project

IoU Dice Pixel

30 epochs 0.2703989 0.23404101 0.189038

60 epochs 0.7130330 0.26042986 0.4059788

90 epochs 0.7820648 0.25603748 0.4331681

MagmaDNN: Results of our U-Net using SGD / ADAM vs. PyTorch

Accuracy from our U-Net Model Accuracy from the PyTorch Model

IoU Dice Pixel

30 epochs 0.4309651 0.50146092 0.2908932

60 epochs 0.7270899 0.74655103 0.4190377

90 epochs 0.6567489 0.70364418 0.3932231

Loss Function: Cross-Entropy
Optimizer: Adam
Training Set Size: 31
Image Dimensions: 256x256
Testing Set Size: 7

Loss Function: Cross-Entropy
Optimizer: Adam
Training Set Size: 31
Image Dimensions: 256x256
Testing Set Size: 7

MagmaDNN-CNN Research Project

IoU Dice Pixel

30 epochs 0.394911641 0.45857022 0.272548213

60 epochs 0.697989235 0.732576941 0.408179616

90 epochs 0.677266841 0.717351087 0.400935175

MagmaDNN: Results of our U-Net using SGD

● 80/20 training-testing split
● 31 total samples in the training set
● Batch Size: 1
● Learning Rate: 3e-6
● Momentum = 0.9
● Loss Function = Cross-Entropy

MagmaDNN-CNN Research Project

MagmaDNN: Testing with a simple example

MagmaDNN-CNN Research Project

MagmaDNN: Future Directions

● Implement URes-Net using the successfully implemented U-Net and Resnet
models.

● Implement bilinear interpolation and compare the result with Convolution
Transpose.

● Adjust the distance aware cross entropy algorithm to calculate the closest
foreground pixel only once.

● Write the distance aware cross entropy in GPU code so it is more efficient.
● Write the _grad of the concat in GPU code so it is more efficient.

MagmaDNN-CNN Research Project

MagmaDNN: References

[1] Ronneberger, Fischer, P., & Brox, T. (2015). U-Net: Convolutional Networks for Biomedical
Image Segmentation. In Medical Image Computing and Computer-Assisted Intervention MICCAI
2015 (pp. 234241). Springer International Publishing.

[2] Dumoulin, & Visin, F. (2016). A guide to convolution arithmetic for deep learning.

[3] Nichols, Wong, K., Tomov, S., Ng, L., Chen, S., & Gessinger, A. (2019). MagmaDNN:
Accelerated Deep Learning Using MAGMA. Proceedings of the Practice and Experience in
Advanced Research Computing on Rise of the Machines (learning), 16.
https://doi.org/10.1145/3332186. 3333047

[4] https://developer.download.nvidia.com/compute/DevZone/docs/html/C/ doc/CUDA C
Programming Guide.pdf

[5] Sergey Ioffe, & Christian Szegedy. (2015). Batch Normalization: Accel-
erating Deep Network Training by Reducing Internal Covariate Shift.
arXiv.org.

