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MagmaDNN: Project Overview

� Initial Research Goals for this Summer:

● Implement a U-Net architecture in MagmaDNN 
● Extend I/O functions to handle HDF5 data
● Run Data Challenge #3 on MagmaDNN
● Build a UResNet 

10 weeks

introduction / lectures project development

midterm presentation

project development

final presentation



● Unet has many applications in the medical field as well as other fields.
○ Brain image segmentation
○ Liver image segmentation
○ Protein binding site prediction

● Given a labeled training set, a Unet is able to learn how to classify each object.
● After being trained, the model can take an image as input and then perform segmentation to a 

high degree of accuracy. 
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MagmaDNN: U-Net Background

� Why use a U-Net?
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MAGMADNN: Extend MAGMADNN to run Unet Applications

• A Unet is a neural network used to detect objects in an 
image: this is known as image segmentation. 

• Identifies objects by downscaling the input image using 
convolutions.

• The network picks up on the different objects.
• The image is then upscaled and the pixels are given a 

classification based on the identified objects.

MagmaDNN: U-Net Background

� What is a Unet?



● It is done with a combination of convolutions, 

batch normalization and relu activation. This 

combination is called a convolution block.

● An Encoder block uses two convolution blocks 

and a maxpool to perform the downsampling. 

● It is standard to adjust the number of Encoder 

blocks you need based on the dimensions of 

the input images.

� Downsampling in U-Net
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MagmaDNN: Extend MagmaDNN to run CNN ApplicationsMagmaDNN: U-Net Background



� Up-sampling in U-Net

Up-sampling is used in the decoder part of the Unet 
architecture. The goal is to transform the down-scaled 
input image to its original dimension.

 
● There are many different ways to implement 

Up-sampling in a Unet.
● Nearest-Neighbor, Bi-linear interpolation, and 

transposed convolution are all methods of 
up-sampling.
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MagmaDNN: U-Net Background



� Up-sampling in U-Net
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MagmaDNN: U-Net Background

Bilinear

Conv2D Transpose
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MagmaDNN: U-Net Background

� Loss Functions for U-Net

• Cross-Entropy Loss is the best loss function for image 

segmentation applications; however, it can be modified 

to converge prediction results onto the foreground of 

the image.

• y
cij 

 is a distance calculation based on the nearest 

foreground pixel. It is a 2D Gaussian distribution 

centered on the nearest foreground pixel.

• This allows for the loss function to be lenient on 

background pixels that are relatively close to the 

foreground.
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MagmaDNN: Background on HDF5

● HDF5 (Hierarchical Data Format 5) is a format 
for storing scalars, matrices and tensors on the 
disk. 

● It is commonly used in computational sciences.
● MagmaDNN uses this format to store trained 

models.
● It is “hierarchical” because the file stores 

tensors in a tree structure
○ The tree consists of groups, which contains 

zero or more groups or zero or more 
datasets. A dataset stores a tensor and its 
metadata.

� MagmaDNN I/O Capabilities
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MagmaDNN: U-Net Implementation - Downsampling
Function Template

First Half of the Encoder Second Half of the Encoder

3x3 Convolution + BN + RELU (x2)              Dropout (Optional)               Max Pooling by 2* (no max pooling on last encoder)
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MagmaDNN: U-Net Implementation - Downsampling

• The number of filters doubles at each EncoderMiniBlock function call.

• The last value in the vector returned from EncoderMiniBlock is the skip connection. Store this 
value for later use and then remove it.
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MagmaDNN: U-Net Implementation - Upsampling
Function Template

Upsampling (by 2) + 3x3 Convolution              Concat w/ Skip Connection              3x3 Convolution + BN + RELU (x2)
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MagmaDNN: U-Net Implementation - Upsampling

• Unlike the Encoder block calls, where the number of filters doubles, the number of filters in 
the decoder gets cut in half at each subsequence Decoder block call.

• The first parameters is just the previous layers output.
• The second parameter is the skip connection from the Encoder.
• The number of Decoder blocks is dependent on the number of Encoder blocks with max 

pooling.
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MagmaDNN: U-Net Implementation - Transposed Convolution

The function that gets called in a MagmaDNN program.

• This makes it easy to use as long as you have included MagmaDNN into your project.
• Alot of the parameters have default values, which are specifically set to double to dimensions.
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MagmaDNN: U-Net Implementation - Transposed Convolution

• The goal of a transposed convolution is 
to increase the height and width of the 
input tensor.

• Unlike in the normal convolution in 
MagmaDNN, where there is a cuDNN API 
function to calculate the output shape, 
we must use our own calculation.

• Explicitly calculating the output shape 
can be dangerous because it can cause 
problems in later steps.

• So, you must be careful when adjusting 
the default parameters of the 
transposed convolution function.
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MagmaDNN: U-Net Implementation - Transposed Convolution

Normal Convolution in MagmDNN Transposed Convolution in MagmDNN

● The forward pass of the transposed convolution.
● Notice how we use the cudnnConvolutionBackward 

for the normal convolution to perform the forward 
pass for the transpose.

● The forward pass of the normal convolution.
● Notice how it just uses the cudnnConvolutionForward 

to perform the forward pass, which is standard.
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MagmaDNN: U-Net Implementation - Transposed Convolution

Normal Convolution in MagmDNN Transposed Convolution in MagmDNN

● The gradient calculation of the input tensor for normal 
convolution.

● Again, it uses its standard cuDNN function for the 
computation.

● The gradient calculation of the input tensor for 
transposed convolution. 

● Notice how it uses the cudnnConvolutionForward, 
which is the forward pass of normal convolution, to 
compute the backward pass of the transposed.

● The grad is equivalent to the x in the normal 
convolution forward pass, the w is just the weight 
tensor.
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MagmaDNN: U-Net Implementation - Transposed Convolution

Normal Convolution in MagmDNN Transposed Convolution in MagmDNN

● The gradient calculation of the filter tensor for normal 
convolution.

● This is just the standard cudnn function for normal 
convolution

● The gradient calculation of the filter tensor for 
transposed convolution.

● Notice how it uses the same function as the normal 
convolution to calculate the gradient of the filter.

● The only difference is the parameters. The positions of 
grad and x are flipped in the transposed function call.
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MagmaDNN: U-Net Implementation - Transposed Convolution

Transposed Convolution in MagmDNN Transposed Convolution in Keras
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MagmaDNN: U-Net Implementation - Concatenation

� Skip Connections / Concatenation in U-Net

• The skip connection in a U-Net architecture is just a saved layer 
from the downsampling part of the network.

• Before max pooling is applied, the layer is stored away for later 
use in the up-sampling part.

• This allows for the original structure of the input image to be 
preserved through the countless convolutions and transposed 
convolutions.

• The skip connection is concatenated with the result of the 
transposed convolution, along the channel axis.



● At a certain point, the error increases with network 

depth—degradation problem.

● The main advantage is to prevent vanishing gradient 

● It allows the neutral network to have an alternative path to 

pass on gradient

● It helps U-Net that have a lot blocks of encoder and decoder to 

learn effectively

● It can help with the U-Net to upscale back to the original size 

after the feature is captured in the encoder part 

● Without a proper concat, the output image will only give out 

features of the picture instead of the segmented of the image
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MagmaDNN: Extend MagmaDNN to run CNN Applications

� Why do we need concatenation in the decoder?
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MagmaDNN: U-Net Implementation - Concatenation

Credit: https://forums.developer.nvidia.com/t/concatenate-using-cudnn/63553
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MagmaDNN: U-Net Implementation - Loss Function

● Everything for the distance aware cross entropy to work has been implemented; however, the calculation of the 
foreground pixel took a very looking time. 

● Since the ground truth never changes. A fix to this would be to calculate the closest foreground pixel only once 
and store it somewhere, rather than calculating it every time the loss function gets called. This initial calculation 
would be slow, but the overall training speed would greatly increase. 

● As a temporary fix, since time has ran out, we have just put in a normal cross-entropy calculation in the _eval of 
the distawarecrossentropy.

● It seems to work just fine, but the distance aware implementation would be ideal for image segmentation, as it 
would allow for the model to focus training on the foreground.
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MagmaDNN: Implementing HDF5

MagmaDNN’s HDF5 library consists of standalone functions 
that wrap the C API such as:

● hdf_open: establish connection to HDF file (like 
fopen)

● hdf_ds_open: establish connection to dataset in a HDF 
file

● hdf_ds_read & hdf_ds_write: read and write to 
dataset

Atop these functions is a pair of classes: HDF5 and 
HDF5_DataSpace, which refer to the file and 
dataspace/dataset, respectively.

� MagmaDNN I/O Implementation
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MagmaDNN: Training Background

�  Training parameters in other U-Nets

• From the original U-Net paper, we learnt that the 

characteristic of a U-Net is it trains with a small dataset but 

with high resolution.

• For the purpose of biomedical image segmentation to identify 

problematic cell, it requires 30 512 x 512 images.

• The segmentation takes less than a second on a “recent GPU” 

in 2015
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MagmaDNN: Training 

� Training parameters in OURs U-Net

• We are using 31 256 x 256 images for the training set and 7 

images for the testing set.

• We have trained our U-Net on a Nvidia RTX-3060 with 12GB of 

memory.

• Since our training set is so small, we went with a batch size of 1, 

which is standard with SGD.

• We have been doing alot of testing with various learning rates. 

With Adam we have been staying around 3e-4 and with SGD we 

have been staying around 1e-6. 
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MagmaDNN: Results of our U-Net using ADAM 

After 30 epochs

After 60 epochs

After 90 epochs

● 80/20 training-testing split
● 31 total samples in the training set
● Batch Size: 1
● Learning Rate: 3e-4
● Loss Function = Cross-Entropy

Ground Truth

Sample #1 Sample #2 Sample #3 Sample #4 Sample #5 Sample #6 Sample #7
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MagmaDNN: Results of our U-Net using SGD w/ Momentum

After 30 epochs

After 60 epochs

After 90 epochs

● 80/20 training-testing split
● 31 total samples in the training set
● Batch Size: 1
● Learning Rate: 3e-6
● Momentum = 0.9
● Loss Function = Cross-Entropy

Ground Truth

Sample #1 Sample #2 Sample #3 Sample #4 Sample #5 Sample #6 Sample #7
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MagmaDNN: Comparing Loss of SGD w/ Momentum and ADAM

SGD w/ Momentum
● Batch Size: 1
● Learning Rate: 3e-6
● Momentum = 0.9
● Loss Function = Cross-Entropy

Adam
● Batch Size: 1
● Learning Rate: 3e-4
● Beta1 = 0.9
● Beta2 = 0.999
● Loss Function = Cross-Entropy
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MagmaDNN: Results of our U-Net using SGD / ADAM vs. PyTorch

IoU Dice Pixel

Pytorch model w/ 
Car dataset

0.705533955 0.536302446 0.405787962

U-Net-like model 
w/ full Oxford Pet 

Set (7349)

0.924337826 0.2089358 0.480340

Our Model w/ SGD 0.697989235 0.732576941 0.408179616

Our Model w/ 
ADAM

0.7270899 0.74655103 0.4190377
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MagmaDNN: Results of our U-Net using ADAM vs. PyTorch
Predicted Images from our U-Net Predicted Images from PyTorch
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IoU Dice Pixel

30 epochs 0.2703989 0.23404101 0.189038

60 epochs 0.7130330 0.26042986 0.4059788

90 epochs 0.7820648 0.25603748 0.4331681

MagmaDNN: Results of our U-Net using SGD / ADAM vs. PyTorch

Accuracy from our U-Net Model Accuracy from the PyTorch Model

IoU Dice Pixel

30 epochs 0.4309651 0.50146092 0.2908932

60 epochs 0.7270899 0.74655103 0.4190377

90 epochs 0.6567489 0.70364418 0.3932231

Loss Function: Cross-Entropy
Optimizer: Adam
Training Set Size: 31
Image Dimensions: 256x256
Testing Set Size: 7

Loss Function: Cross-Entropy
Optimizer: Adam
Training Set Size: 31
Image Dimensions: 256x256
Testing Set Size: 7
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IoU Dice Pixel

30 epochs 0.394911641 0.45857022 0.272548213

60 epochs 0.697989235 0.732576941 0.408179616

90 epochs 0.677266841 0.717351087 0.400935175

MagmaDNN: Results of our U-Net using SGD

● 80/20 training-testing split
● 31 total samples in the training set
● Batch Size: 1
● Learning Rate: 3e-6
● Momentum = 0.9
● Loss Function = Cross-Entropy
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MagmaDNN: Testing with a simple example
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MagmaDNN: Future Directions 

● Implement URes-Net using the successfully implemented U-Net and Resnet 
models.

● Implement bilinear interpolation and compare the result with Convolution 
Transpose.

● Adjust the distance aware cross entropy algorithm to calculate the closest 
foreground pixel only once. 

● Write the distance aware cross entropy in GPU code so it is more efficient.
● Write the _grad of the concat in GPU code so it is more efficient.
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