
Finding Hidden Patterns in High Resolution
Wind Flow Model Simulations

Yuqiao Zhao1, Yulin Wei2 Ming Chi Wong3, Anna Fortenberry4, and Spencer
Smith5

1 City University of Hong Kong
zhyuqiao@gmail.com,

2 The Chinese University of Hong Kong
yulinwei96@gmail.com

3 City University of Hong Kong
wilson89006114@gmail.com
4 University of North Texas
AnnaFortenberry@my.unt.edu
5 University of North Texas
SpencerSmith4@my.unt.edu

Abstract. The optimized designs of wind farms are dependent on accu-
rate microscale wind flow dynamic data. Large Eddy Simulations (LES)
are used to simulate atmospheric properties at a microscale level when
driven by boundary conditions from ERA5. High resolution simulations
can be computationally expensive and require large amounts of storage,
so a method to upscale a low resolution output of LES data is sought
after. Two promising approaches have been presented in a hierarchical
autoencoder [5] and a GAN model [6]. This paper explores three addi-
tional approaches to this problem: an integrated 2D and 3D CNN, an
interpolation model, and a ResUnet model. The integrated CNN demon-
strates the most promising results but is computationally expensive. In-
terpolation falls second to CNN in accuracy but produces fast, cheap
results. The U-Net shows promise but is too computationally expensive
to train with limited resources.

Keywords: wind flow dynamics, LES, ERA5, PCA, t-SNE, 3DCNN,
interpolation, ResUnet

1 Introduction

Accurate microscale wind flow dynamic data is essential to the design of wind
farms. Wind flow dynamics can be highly sensitive to terrain irregularities, and
wind conditions may drastically change from one location to another over small
distances [1]. Computational Fluid Dynamics (CFD) offers an approach for accu-
rately assessing atmospheric flow properties with a mathematical model known
as Large Eddy Simulation (LES). It is able to simulate turbulence at a reason-
able cost. Boundary conditions derived from ERA5 data, a global weather model
with a resolution around thirty kilometers, drives the LES model. LES is able

2 Yuqiao Zhao et al.

downscale the wind field to a resolution around ten to one hundred meters, out-
putting detailed data on microscale wind flow dynamics in an area. LES datasets
are obtained by running the simulation over the course of a year in increments of
ten minutes. As a consequence, high resolution simulations require a storage size
of several hundred gigabytes. To resolve this issue, a method to first generate a
low dimensional LES dataset and then accurately upscale it to a high dimension
is desired. This paper tests three methods for solving the upscaling problem: an
integrated 2D and 3D CNN, an interpolation model for super resolution, and a
ResUnet.

This problem is solved in three parts: exploratory data analysis and visual-
ization, dimensionality reduction of the grid, and upscaling from a low resolution
to high resolution grid. The rest of this paper is as follows. A background section
presents related works and preliminary information for understanding our solu-
tions. The designs of our three upscaling methods are discussed in section three.
A methodology section details the processes each of the three parts. Results
and discussion follow this, and a conclusion highlights the key contributions and
future directions.

2 Background

2.1 Related Works

Two significant contributions related to upscaling low resolution data to a higher
resolution were presented with this data challenge. The first uses a Generative
Adversarial Network (GAN) to super resolve wind velocity and solar irradiance
from global output models [6]. Resolution enhancements of 50x and 25x were
achieved for wind and solar data, respectively. It was able to learn and preserve
features from training datasets, as well as reduce storage space and computa-
tional requirements. However, this model does not used for data on a microscale.
The second contribution presents an hierarchical autoencoder that can extract
nonlinear autoencoder modes of flow fields while preserving the contribution
order of latent vectors [5]. It maps high dimensional systems into low dimen-
sional spaces. However, it is stated that a few issues remain with this model and
advanced designs are necessary.

This paper contributes to the literature by testing three new approaches, in-
cluding an integrated 2D and 3D CNN, an interpolation method, and a ResUnet.
Two promising approaches to solving problems of this nature exist; we present
additional ones for ongoing research efforts. The results signify whether these
approaches are considerable options for similar applications in the future.

2.2 Datasets and Dimensionality

The problem statement for this paper was presented as a Data Challenge by
the Oak Ridge National Lab [1]. Five datasets were provided from the U.S. De-
partment of Energy, project GELESSMC under Contract DE-AC05-00OR22725.

High Resolution Wind Flow Patterns 3

Three of the datasets are compiled from the entirety of the year of 2020, includ-
ing an ERA5 dataset, a high resolution LES dataset, and a low resolution LES
dataset. The remaining two are from the month of January in 2020 only, mak-
ing up a high resolution LES sample and low resolution LES sample. The ERA5
model provides hourly estimates of atmospheric variables at a resolution of about
thirty kilometers. The data is extracted at a single point, (-7.737◦E, 39.7◦N), for
this study; thus, the output is 1D + time. To make the LES datasets a down-
loadable size, the data was reduced to hourly timestamps instead of ten-minute
timestamps. Furthermore, this data is reduced from a dimensionality of 3D +
time to 2D + time by setting a constant height of 100m. This results in 256 x
256 x 1 x 8760 nodes and time steps. Figure 1 demonstrates this dimensionality
constraint by portraying a terrain-following slice.

Fig. 1: Visualization of data: terrain-following slice

The high resolution LES dataset is 80m x 80m x 1H frequency and the low is
160m x 160m x 1H frequency. Table 1 lists the variables present in these datasets.

3 Upscaling Methods

3.1 Integrated 2D and 3D CNN

Our first approach was to use an integration of a 2D and 3D CNN, created
by a student in an REU program at UTK in 2019. Two models were tested,
titled 5-Parallel and Delta. The 5-parallel model consists of five 2D convolution
layers in parallel, as seen in Figure 2. It is concatenated and passed to a 3D
convolution stack. A 2D component is responsible for feature extraction, and
a 3D component is responsible for super resolution [11]. The output of the 3D
stack is then passed to the conv2d layer and the limitoutputlayer. The latter uses
a modified version of sigmoid, shown in equation one. The model is trained with
five recurrents for both the 2D and 3D parts. Other hyperparameters include
the Adam optimizer set to a 0.00001 learning rate and twenty epochs.

4 Yuqiao Zhao et al.

Table 1: Variables of ERA5 and LES

Variables(ERA5) Variables interpretations

’t2m’ 2 meter above ground level temperature in K
‘u100’ 100 meter above ground level U wind component in m/s
‘v100’ 100 meter above ground level V wind component in m/s
‘i10fg’ 10 meter above ground level instantaneous wind gust

Variables(LES) Variables interpretations

‘temp’ 1H average of temperature in Kelvin
‘vel’ 1H average of horizontal wind speed in m/s
’u’ 1H average of U component of wind speed (along ‘xf’) in m/s
’v’ 1H average of V component of wind speed (along ‘yf’) in m/s
‘std’ 1H average of standard deviation of horizontal wind speed in m/s

‘absolute height’ Height above sea level in meter, only depends on (xf, yf) not time

S(x) = (MAX −MIN) ∗ sigmoid(x/100) +MIN (1)

Delta has a similar structure to 5-Parallel, shown in Figure 3. Instead of
processing the video in parallel in the 2D convolution part, Delta lets each frame
pass through different numbers of 2D convolution. It is then concatenated to
the 3D convolution. This model uses symmetrical frames. Blocks 1 and 2 are
responsible for extracting features from a video, and block 3 enlarges the image
size [11].

Fig. 2: 5-Parallel Architecture Fig. 3: Delta Architecture

High Resolution Wind Flow Patterns 5

3.2 Interpolation for Super Resolution

We tested interpolation as an approach with the following tutorial [13]. It uses
OpenCV in Python. A function called cv2.resize() takes a parameter called in-
terpolation, which can be assigned the following flags: INTER NEAREST, IN-
TER LINEAR, and INTER CUBIC. This allowed us to test nearest-neightbor
interpolation, bilinear interpolation, and bicubic interpolation, respectively.

3.3 ResUnet

The deep residual U-Net architecture (ResUnet) [12] is similar to the architecture
of U-Net [2], but includes residual units with skip connections. These connec-
tions can allow for better model loss minimization and decrease the number of
parameters needed.

4 Methodology

4.1 Exploratory Data Analysis and Visualization

Data Pre-processing The objective of part one is to determine whether sys-
tematic bias or correlation exists between the ERA5 and high resolution LES
datasets and whether these results are dependent on the simulated day or grid
position. To allow for comparison, both the ERA5 and LES datasets required
preprocessing. The ERA5 dataset contains a time series at one position, while
the LES dataset contains a time series on a grid. To force the datasets to have
the same dimension, the LES dataset was flattened along xf, the longitude, and
yf, the latitude, as seen in Figure 1. Any missing values were replaced with the
mean value of the dataset. Next, zero-mean normalization was applied. For each
value in a column, the mean of the column was subtracted from it. Finally, PCA
was applied to centralize the information of the full grid and create a new di-
mension, in which location and time were combined. For ERA5, the dimension
of position was first squeezed, since it is for one point locationally. Then, the
data was standardized by subtracting the mean of the dataset.

Bias and Correlation Calculation The high resolution LES data set has six
variables, while the ERA5 dataset has four, as seen in Table 1. Thus, only the
corresponding variables of the datasets were compared for bias and correlation.
These include temperature, t2m and temp, horizontal wind speed, i10fg and vel,
U component of wind speed, u100 and u, and V component of wind speed v100
and v. Equation 2 was applied to each of these sets or corresponding variables for
determining bias. Bias was calculated by simply dividing the sum of differences
between corresponding datapoints in the ERA5 and LES by the number of dat-
apoints in the ERA dataset. This same process was repeated to find correlation,
using the Pearson correlation coefficient [8]. It is useful for detecting the degree
of linear correlation between two sets of data.

6 Yuqiao Zhao et al.

Detection of Time or Location Dependencies To detect whether the bias
and correlation calculations were dependent on the simulated day or grid posi-
tion, two tests were completed. First, the original high resolution LES dataset
was split into four segments based on time. The preprocessing steps and the
bias and correlation steps were performed again. Second, the LES dataset was
split into four segments along the midpoints of the longitude and latitude. The
same preprocessing steps and calculations were performed. Both of these tests
produced four outputs, the first set dependent on a segment of time in the ERA5
dataset and the second set dependent on a LES grid location. The outputs within
a set were compared with each other for similarity.

4.2 Dimensionality Reduction of the Grid

Analysis of LES Dataset Variables To accomplish part one of the solution,
dimensionality reduction was performed on the LES high resolution dataset to
allow for comparison to the ERA5 dataset. Part two examines this process in
further detail. The goal of dimensionality reduction is to compress the site be-
havior into a lower dimensional space without losing wind flow model properties.
To accomplish this, the variables in the high resolution LES dataset were tested
for high correlation. A high correlation between variables can insinuate redun-
dant information. First, the Pearson correlation coefficient was applied to each
combination of two variables. After this, the variance [9] of each variable was
tested to get the degree of dispersion.

Standard Dimension Reduction Approach The first method we applied
to the high resolution dataset was PCA [3], a linear dimensionality reduction
method. After standardizing the data, computing the covariance matrix, and per-
forming singular value decomposition, it was determined that the first principal
component captured the most information of the data. The data was projected
along this component. To compute the percentage of variance, or information,
accounted for, the first eigenvalue was divided by the sum of all the eigenvalues.

Deep Learning Dimension Reduction Approach T-SNE [4], a nonlinear
reduction method, is contrasted to PCA. Two hyperparameters of this technique
include perplexity and learning rate. These are important because they affect
the shape of latent space. Perplexity was adjusted in small increments until the
low dimensional mapping fit the high dimensional mapping closely. The learning
rate corresponds to the local structure. We discovered that the larger it was, the
better the local structure was preserved.

Comparison of PCA and t-SNE PCA and t-SNE were compared in three
aspects. First, we considered whether each method was able to regenerate the
full LES grid from the reduced state. Second, we considered the amount of
information retained by the output latent spaces. Finally, we examined whether

High Resolution Wind Flow Patterns 7

the latent spaces reflected the features of the original datasets. For both methods,
we reduced the dimension in two directions. The first reduced the LES data with
separate variables from dimension 744*192*192 to 744. The second reduced LES
data from 36864*6 to 36864*2, where 36864 is the combined position and time
and six is the number of variables.

Interpretability of the Latent Space To interpret the features of the output
latent spaces, we first added labels to the original high resolution LES dataset.
The selected scale for this process was wind power density [10] because it is
important data to the wind industry. Additionally, it combines the temp and vel
variables. Since air density is not a variable of the LES dataset, we calculated
it from the temperature variable using this resource [14]. There are eight wind
power density classifications. The criteria are based on the classification method
established by Onea et al. [15]. We added an eighth label for when the wind
power density was over 1148.75, labeled C8.

For further comprehension of the latent spaces, we tested different timesteps
dropped different sets of variables. The tested timesteps include one hour, two
hours, four hours, and twenty-four hours. For the sets of dropped variables, we
first dropped absolute height. This left five variables combined. Next we dropped
the u and v wind components, which left four variables combined. The final
test dropped absolute height, u, and v. Comparisons between the different latent
spaces allowed us to find features. As a final test,

√
u2 + v2 was used instead of vel

to calculate wind power density, and we applied updated the labels. The variable
vel was dropped and the generated latent space was compared the output of the
test where we dropped u and v.

4.3 Upscaling from a Low-Resolution to High-Resolution Grid

3DCNN After constructing the model, a few optimizations were performed.
Gradient computation was turned off during validation, some parts of the data
were successfully run in parallel on GPU, automatic mixed precision was used,
and different learning rates were tested. The code is available at https://github.
com/CheukHinHoJerry/3DCNN-SUPER-2021-pytorch.

Interpolation We had more success in our approach with the interpolation
method. The resize function allowed us to test each of the three flags by simply
setting interpolation to each one.

ResUnet The ResUnet proved to be problematic, as the CNN did. When we
attempted to train the model with the full dataset, the model failed to converge.

8 Yuqiao Zhao et al.

5 Results and Discussion

5.1 Exploratory Data Analysis and Visualization

The bias and correlation between ERA5 and high/low resolution LES data are
shown as Table 2. It can be seen that LES is unbiased due to the small bias.
Table 2 also illustrated that LES has high linear correlation with ERA5 since
the correlations are all near to 1.

Table 2: bias and correlation of ERA5 and LES data

Measurement Temperature Horizontal speed U component V component

ERA5 and high-resolution LES

bias -2.13 × 10−5 -1.66 × 10−7 3.48 × 10−8 5.29 × 10−8

correlation 0.8833 0.8065 -0.9677 0.9561

ERA5 and low-resolution LES

bias -2.13 × 10−5 -1.66 × 10−7 3.48 × 10−8 5.29 × 10−8

correlation 0.8949 0.8037 -0.9702 0.9594

Table 3 presents the results of the bias and correlation computations where
the LES dataset is segmented by time. It illustrates that bias and correlation
depends on time since they are various for different time periods. However, the
results based on the different segmented positions are similar to each other, as
Table 4 displays, which means that bias and correlation do not depend on the
positions in the grid.

5.2 Dimensionality Reduction of the Grid

Table 5 illustrates the correlation between variables of LES. It shows that ”temp”
is correlated with U (0.4760) and V component (0.3534) of wind speed, and ”vel”
has high correlation with ”std” (0.7910). As shown in Table 6, the variance of
”absolute height” is 6129.4165, which can be dropped later.

The Fig 4 and 5 below show the 1 Dimension latent space reduced by PCA
and t-SNE methods respectively. With similar shapes to ERA5, PCA preserves
most information of the original data. However, only part of the information is
retained by t-SNE, and the rest part is reversed.

The Fig 5 and 6 below compare the 2 Dimension latent space reduced by both
methods. It can be seen that there is only one cluster for PCA and a pattern
formed by different clusters for t-SNE. Therefore, t-SNE extracts the features of
the original dataset better.

Fig 8-10 are different latent spaces generated by t-SNE technique. The first
3 figures are formed from the same one-hour data and latter three are formed
by 24-hour data.

High Resolution Wind Flow Patterns 9

Table 3: bias and correlation of ERA5 and time-segmented low-resolution-LES

Time period 1 Time period 2 Time period 3 Time period 4 Entire time series

Temperature

bias 5.4771 -1.5317 -7.8915 3.9460 -2.13 × 10−5

correlation 0.7780 0.9011 -0.8267 0.8935 0.8949

Horizontal speed

bias 0.2436 -0.0565 6.9149 × 10−5 -0.1872 -2.13 × 10−5

correlation 0.8647 0.7599 0.6475 0.8647 0.8037

U component

bias 0.9747 -0.6195 -0.6428 0.2876 3.48 × 10−8

correlation 0.9781 -0.9672 -0.9421 0.9789 -0.9702

V component

bias -0.1252 -0.1767 0.7601 -0.4582 5.29 × 10−8

correlation 0.9672 0.9684 0.9407 0.9641 0.9594

Table 4: bias and correlation of ERA5 and grid-divided low-resolution-LES

Area 1 Area 2 Area 3 Area 4 Full grid

Temperature

bias -2.13 × 10−5 -2.13 × 10−5 -2.13 × 10−5 -2.13 × 10−5 -2.13 × 10−5

correlation 0.8924 0.8987 0.8911 0.8961 0.8949

Horizontal speed

bias -1.66 × 10−7 -1.66 × 10−7 -1.66 × 10−7 -1.66 × 10−7 -1.66 × 10−7

correlation 0.8095 0.7778 0.7929 0.6564 0.8037

U component

bias 3.48 × 10−8 3.48 × 10−8 3.48 × 10−8 3.48 × 10−8 3.48 × 10−8

correlation 0.9641 -0.9653 0.9503 -0.9505 -0.9702

V component

bias 5.29 × 10−8 5.29 × 10−8 5.29 × 10−8 5.29 × 10−8 5.29 × 10−8

correlation 0.9367 0.9395 0.9449 0.9325 0.9594

10 Yuqiao Zhao et al.

Table 5: Correlation of Variables between Dataset Variables

u v vel std temp absolute height

u 1.0000 0.3254 -0.2319 -0.1787 0.4760 -0.0255
v 0.3254 1.0000 -0.2056 -0.1747 0.3534 -0.0108
vel -0.2319 -0.2056 1.0000 0.7910 -0.1807 0.2064
std -0.1787 -0.1747 0.7910 1.0000 -0.1255 0.0482
temp 0.4760 0.3534 -0.1807 -0.1255 1.0000 -0.2464

absolute height -0.0255 -0.0108 0.2064 0.0482 -0.2464 1.0000

Table 6: variance of LES variables

u v vel std temp absolute height

variance 8.7451 12.3115 6.9760 0.2423 4.4894 6129.4165

Fig. 4: ”vel” reduced by PCA and
”i10fg” magnify 100 times

Fig. 5: “vel” reduced by t-SNE and
“i10fg” magnify 10 times

High Resolution Wind Flow Patterns 11

Fig. 6: reduced 2D plot by PCA
method

Fig. 7: reduced 2D plot by t-SNE
method

The 1-hour data shows a good separation of different classes of data on each
cluster, and the categories are arranged according to the level of classes. The left
part of Fig 8 shows the latent space generated by the high-resolution LES with
all 6 variables (”vel”, ”temp”, ”std”, ”u”, ”v”, and ”absolute height”). The right
part of Fig 8 is generated by LES with 4 variables, which are not including ”u”
and ”v”. Comparing two figures in Fig 8, the latent space without ”u” and ”v”
has smoother boundaries that distinguish different classes. However, dropping
”u” and ”v” has little effect on the shape of the latent space. Conversely, there
is only one large cluster formed after dropping the variable ”absolute height”,
as shown in the left part of Fig 9. It indicates that the shape with separated
clusters in the left of Fig 8 is due to the diversity of ”absolute height”. Hence,
removing ”absolute height” is helpful to observe the magnitude of wind power
density, which gradually decreases from left to right in the left part of Figure 9.

Different from the latent spaces formed by one-hour data, the ones gotten
from 24-hour data is shaped like a sphere. Nevertheless, comparing the latent
spaces generated by different dates can also illustrate which date has more wind
power density. Since the main color of left part of Fig 10 is blue, which represents
”C1”, and it is pink (”C7”) in the right of Fig 10, it can be concluded that the
date 01-22 has much stronger wind power than 01-14.

There is one more observation from Fig 11 that the well segmented bands of
different classes would turn into rings with the increasing of input time periods.

12 Yuqiao Zhao et al.

Fig. 8: 1-hour LES with 6 variables(left) and 4 variables(right)

Fig. 9: 5 variables (’u’,’v’,’std’,’vel’, and ’temp’)- 1 hour (left) and 24 hours (right)

Fig. 10: left: 01-14 right: 01-22

High Resolution Wind Flow Patterns 13

Fig. 11: 5 variables (’u’,’v’,’std’,’vel’, and ’temp’)- 2 hours (left) and 4 hours
(right)

5.3 Upscaling from a Low-Resolution to High-Resolution Grid

3DCNN With the dataset used during the 2019 REU, the following results
were achieved. A low resolution LES output was upscaled to a higher resolution.
This is shown in Figure 11.

Fig. 12: Upscaling of LES data by 3DCNN

Interpolation The PSNR of nearest-neighbor, bilinear, and bicubic interpola-
tions are 23.48, 24.12 and 24.13 respectively. The SSIM of them are 0.64, 0.67
and 0.68. Figure 12 compares the upscaled low-resolution LES with ’vel’ variable
by cubic interpoltion and the original high-resolution LES.

14 Yuqiao Zhao et al.

Fig. 13: left: upscaled by cubic interpolation right: original high-resolution LES

ResUnet When performing inference on the sample dataset with the trained
model, we achieve an average MSE loss of 25.938, which is not ideal. We were not
able to train the model with the full dataset, but the model failed to converge.

High Resolution Wind Flow Patterns 15

References

1. Julian, A., Davoust, S., Charuvaka, A.: Challenge 3: Finding Hidden Patterns in
High Resolution Wind Flow Model Simulations. Oak Ridge National Laboratory
(2022). https://smc-datachallenge.ornl.gov/ch3 windflow/

2. Ronneberger, O., Fischer, P., Brox, T.: U-Net: Convolutional Networks for Biomed-
ical Image Segmentation. In: Navab, N., Hornegger, J., Wells, W., Frangi, A. (eds)
Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015.
MICCAI 2015. LNCS, vol 9351. Springer, Cham (2015). https://doi.org/10.1007/
978-3-319-24574-4 28

3. Holland, S. M.: PRINCIPAL COMPONENTS ANALYSIS (PCA). Department of
Geology, University of Georgia, Athens, GA 30602-2501.(2019). http://strata.uga.
edu/8370/handouts/pcaTutorial.pdf

4. Maaten, L. V., Hinton, G.: Visualizing Data using t-SNE. In: Jornal of Ma-
chine Learning Research, vol 9. (2008). https://www.jmlr.org/papers/volume9/
vandermaaten08a/vandermaaten08a.pdf?fbcl

5. Fukami, K., Nakamura, T., Fukagata, K.: Convolutional neural network based hi-
erarchical autoencoder for nonlinear mode decomposition of fluid field data. Physics
of Fluids, 32(9), 095110. (2020). https://arxiv.org/abs/2006.06977v2

6. Stengel, K., Glaws, A., Hettinger, D., King, R. N.: Adversarial super-resolution
of climatological wind and solar data. In: Proceedings of the National Academy
of Sciences, 117(29), 16805-16815. (2020). https://www.pnas.org/doi/full/10.1073/
pnas.1918964117

7. . Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic
segmentation. (2015). https://arxiv.org/pdf/1411.4038.pdf

8. How to Calculate a Pearson Correlation Coefficient by Hand Statology (2020).
https://www.statology.org/correlation-coefficient-by-hand/

9. Glen, S.: Variance: Simple Definition, Step by Step Exam-
ples StatisticsHowTo: Elementary Statistics for the rest of us!
urlhttps://www.statisticshowto.com/probability-and-statistics/variance/

10. Kasper, D.: Wind Energy and Power Calculations. Dutton e-Education Institute,
College of Earth and Mineral Sciences, The Pennsylvania State University. https:
//www.e-education.psu.edu/emsc297/node/649

11. Ho, C., Li, J.: Video Super Resolution with Integrated 2D and 3D Convolution
Neural Network. (2021). https://www.jics.utk.edu/recsem-reu/recsem21.

12. Zhang, Z., Qingjie, L., Wang, Y.: Road Extraction by Deep Residual U-Net (2017).
IEEE Geoscience and Remote Sensing Letters. https://arxiv.org/pdf/1711.10684.
pdf

13. OpenCV resize image using cv2.resize(). TutorialKart. (2020). https://www.
tutorialkart.com/opencv/python/opencv-python-resize-image/

14. Hall, N.: Earth Atmosphere Model. NASA. (2021). https://www.grc.nasa.gov/
www/k-12/airplane/atmosmet.html

15. Onea, F., Ruiz, A., Rusu, E.: An Evaluation of the Wind Energy Resources along
the Spanish Continental Nearshore. Energies. (2020).

16 Yuqiao Zhao et al.

6 Appendix

Listing 1.1: Code for Question 1 - low resolution

import pandas as pd
import numpy as np
import matp lo t l i b . pyplot as p l t
import seaborn as sns
import s c ipy . s t a t s as s t a t s
import xarray as xr
import netCDF4 as nc
from sk l e a rn . impute import SimpleImputer
imp = SimpleImputer (m i s s i ng va lu e s=np . nan , s t r a t e gy=’mean ’)
from sk l e a rn . decomposit ion import PCA
pca = PCA(n components=1)

#load da t a s e t s
ds e ra5 = xr . l o ad da ta s e t (’ /data/ pe rd igao e ra5 2020 . nc ’)
d s h i g h r e s = xr . l o ad da ta s e t (’ /data/ pe rd i gao h igh re s 1H 2020 . nc ’)
d s l ow r e s = xr . l o ad da ta s e t (’ /data/ perd igao low re s 1H 2020 . nc ’)

#pre−proces s d s l ow r e s from 3D to 1D
#ve l
ve l=np . array (d s l ow r e s [’ v e l ’])
n=ve l [0 , : , :] . reshape (−1). shape [0]
m=ds l ow r e s . time . shape [0]
Bve=np . empty ((m, n))

#” v e l ” o f a l l p o s i t i o n s 96∗96 f o r each time node
for i in range (m) :

Bve [i , :]= ve l [i , : , :] . r a v e l ()

#rep l a c e the miss ing data wi th mean
imp . f i t (Bve)
Bve =imp . trans form (Bve)

#to ge t zero mean matrix (s t andard i z e in column)
##ve l
Bve −= Bve .mean(ax i s=0)
reduced Bve = pca . f i t t r a n s f o rm (Bve)
reduced Bve = np . squeeze (reduced Bve)

#pre−proce s s ing ERA5 temp
##i10 f g
i 10 fg A = np . array (ds e ra5 [’ i 1 0 f g ’])
i 10 fg A = np . squeeze (i10 fg A)
i10 fg A −= np .mean(i10 fg A)

b ia s between era5 and d s l ow r e s
di f f BAve = reduced Bve − i 10 fg A #wind speed

High Resolution Wind Flow Patterns 17

biasVe=sum(d i f f BAve)/m
to compare the c o r r e l a t i o n between era5 and d s h i g h r e s
corr Bveh Ai10 = np . c o r r c o e f (reduced Bve h , i 10 fg A) #wind speed
print (corr Bveh Ai10)

#di v i d ed by time
def d i v i d e t im e s e r i e s (LES , LES var , ERA5 var , divided number) :

var = np . array (LES [LES var])
era = np . squeeze (np . array (ds e ra5 [ERA5 var]))
era −= np .mean(era)
n=var [0 , : , :] . reshape (−1). shape [0]
m=LES . time . shape [0]
mm=int (m/divided number)
B=[None]∗ divided number
reduced B = [None]∗ divided number
corr B = [None]∗ divided number
bias B = [None]∗ divided number

for i in range (divided number) :
B[i]=np . empty ((mm, n))
for j in range (mm) :

B[i] [j , :]= var [j+mm∗ i , : , :] . r a v e l ()
imp . f i t (B[i])
B[i] =imp . trans form (B[i])
B[i] −= B[i] . mean(ax i s=0)
reduced B [i]= np . squeeze (pca . f i t t r a n s f o rm (B[i]))
corr B [i] = np . c o r r c o e f (reduced B [i] , e ra [mm∗ i :mm∗(i +1)])
b ias B [i] = sum(reduced B [i]− era [mm∗ i :mm∗(i +1)])/mm

print (corr B)
print (b ias B)

d i v i d e t im e s e r i e s (d s l ow re s , ’ temp ’ , ’ t2m ’ ,4)
d i v i d e t im e s e r i e s (d s l ow re s , ’ v e l ’ , ’ i 1 0 f g ’ , 4)
d i v i d e t im e s e r i e s (d s l ow re s , ’u ’ , ’ u100 ’ , 4)
d i v i d e t im e s e r i e s (d s l ow re s , ’ v ’ , ’ v100 ’ , 4)

#ds l ow r e s (d i v i d e in t o 4 par t s)
wind speed
ve l=np . array (d s l ow r e s [’ v e l ’])
Bve1=np . empty ((m, nn))
Bve2=np . empty ((m, nn))
Bve3=np . empty ((m, nn))
Bve4=np . empty ((m, nn))
for i in range (m) :

Bve1 [i , :]= ve l [i , : x2f , : x2 f] . r a v e l ()
Bve2 [i , :]= ve l [i , : x2f , x2 f :] . r a v e l ()
Bve3 [i , :]= ve l [i , x2 f : , : x2 f] . r a v e l ()
Bve4 [i , :]= ve l [i , x2 f : , x2 f :] . r a v e l ()

18 Yuqiao Zhao et al.

#rep l a c e the miss ing data wi th mean
imp . f i t (Bve1)
Bve1 =imp . trans form (Bve1)
imp . f i t (Bve2)
Bve2 =imp . trans form (Bve2)
imp . f i t (Bve3)
Bve3 =imp . trans form (Bve3)
imp . f i t (Bve4)
Bve4 =imp . trans form (Bve4)

#to ge t zero mean matrix (s t andard i z e in column)
Bve1 −= Bve1 .mean(ax i s=0)
reduced Bve1 = pca . f i t t r a n s f o rm (Bve1)
reduced Bve1 = np . squeeze (reduced Bve1)
Bve2 −= Bve2 .mean(ax i s=0)
reduced Bve2 = pca . f i t t r a n s f o rm (Bve2)
reduced Bve2 = np . squeeze (reduced Bve2)
Bve3 −= Bve3 .mean(ax i s=0)
reduced Bve3 = pca . f i t t r a n s f o rm (Bve3)
reduced Bve3 = np . squeeze (reduced Bve3)
Bve4 −= Bve4 .mean(ax i s=0)
reduced Bve4 = pca . f i t t r a n s f o rm (Bve4)
reduced Bve4 = np . squeeze (reduced Bve4)

#co r r e a l t i o n
corr Bve1 Ai10 = np . c o r r c o e f (reduced Bve1 , i 10 fg A)
corr Bve2 Ai10 = np . c o r r c o e f (reduced Bve2 , i 10 fg A)
corr Bve3 Ai10 = np . c o r r c o e f (reduced Bve3 , i 10 fg A)
corr Bve4 Ai10 = np . c o r r c o e f (reduced Bve4 , i 10 fg A)
print (corr Bve1 Ai10)
print (corr Bve2 Ai10)
print (corr Bve3 Ai10)
print (corr Bve4 Ai10)

b ia s
di f f BAve1 = reduced Bve1 − i 10 fg A
biasVe1=sum(d i f f BAve1)/m
di f f BAve2 = reduced Bve2 − i 10 fg A
biasVe2=sum(d i f f BAve2)/m
di f f BAve3 = reduced Bve3 − i 10 fg A
biasVe3=sum(d i f f BAve3)/m
di f f BAve4 = reduced Bve4 − i 10 fg A
biasVe4=sum(d i f f BAve4)/m
print (biasVe1 , biasVe2 , biasVe3 , biasVe4)

Listing 1.2: Code for Question 2

import xarray as xr
import netCDF4 as nc
import os

High Resolution Wind Flow Patterns 19

import numpy as np
import matp lo t l i b . pyplot as p l t
import pandas as pd
import seaborn as sns
import s c ipy . s t a t s as s t a t s

from sk l e a rn . mode l s e l e c t i on import t r a i n t e s t s p l i t
from sk l e a rn . impute import SimpleImputer
imp = SimpleImputer (m i s s i ng va lu e s=np . nan , s t r a t e gy=’mean ’)
from sk l e a rn import pr ep ro c e s s i ng
from sk l e a rn . p r ep ro c e s s i ng import StandardSca ler

#Import s c i k i t l e a r n f o r machine l e a rn ing f u n c t i o n a l i t i e s
import sk l e a rn
from sk l e a rn . mani fo ld import TSNE
from sk l e a rn . da ta s e t s import l o a d d i g i t s # For the UCI ML handwri t ten d i g i t s da t a s e t

Import ma t p l o t l i b f o r p l o t t i n g graphs ans seaborn f o r a t t r a c t i v e g raph i c s .
import matp lo t l i b
import matp lo t l i b . p a t h e f f e c t s as pe
%matp lo t l i b i n l i n e
from sk l e a rn . decomposit ion import PCA

sp h i gh r e s = xr . open dataset (’ / data samples / pe rd i gao h i gh r e s 1H 2020 01 . nc ’)
s h i g h r e s=sp h i gh r e s . to data f rame ()
s h i g h r e s . f i l l n a (s h i g h r e s .mean () , i np l a c e=True)
s h i g h r e s=s h i g h r e s . drop ([’ he ight ’] , a x i s=1)

temp = s h i g h r e s [’ temp ’]
p r e s su r e = 101.29 ∗ (temp /288 .08)∗∗5 .256
dens i ty = pre s su r e /(0 .2869∗ temp)
ve l = s h i g h r e s [’ v e l ’]
power = 0 .5 ∗ dens i ty ∗(v e l ∗∗3) #W/mˆ2

#PCA (2D)
X pca = PCA(n components=2). f i t t r a n s f o rm (h i gh r e s)
p l t . f i g u r e (f i g s i z e =(10 , 10))
p l t . t i t l e (’PCA’ , f o n t s i z e =20)
p l t . s c a t t e r (X pca [: , 0] , X pca [: , 1] , l a b e l=”PCA”)
p l t . show ()

def p l o t t s n e 2d 2p (ply , l r) :
h igh 744 2d 2p = TSNE(pe rp l e x i t y=ply , l e a r n i n g r a t e=l r) . f i t t r a n s f o rm (s h i g h r e s)
p l t . f i g u r e (f i g s i z e =(10 , 10))
p l t . s c a t t e r (h igh 744 2d 2p [: , 0] , h igh 744 2d 2p [: , 1])
p l t . t i t l e (f ’ t−SNE 2D(ply={ply } , l e a rn i ng ra t e={ l r }) ’ , f o n t s i z e =20)
return p l t . show ()

p l o t t s n e 2d 2p (50 ,500)

#se t l a b e l s

20 Yuqiao Zhao et al.

l a b e l =[None]∗27426816
for i in range (27426816) :

i f 0<=power [i] <114 .87 :
l a b e l [i]=”C1”

e l i f 114.87<=power [i] <172 .31 :
l a b e l [i]=”C2”

e l i f 172.31<=power [i] <229 .75 :
l a b e l [i]=”C3”

e l i f 229.75<=power [i] <287 .19 :
l a b e l [i]=”C4”

e l i f 287.19<=power [i] <344 .62 :
l a b e l [i]=”C5”

e l i f 344.62<=power [i] <459 .5 :
l a b e l [i]=”C6”

e l i f 459.5<=power [i]<1148.75 :
l a b e l [i]=”C7”

else :
l a b e l [i]=”C8”

s h i g h r e s [’ l a b e l 0 ’]= l a b e l

#time based
def s e l e c t t s n e 2 d (variable number , i , j , ply , l r , labe l number) :

i f var iable number==6:
datase t=s h i g h r e s

e l i f var iable number==5:
datase t=s h i g h r e s . drop ([’ ab s o l u t e h e i gh t ’] , a x i s=1)

e l i f var iable number==4:
datase t=s h i g h r e s . drop ([’u ’ , ’ v ’] , a x i s=1)

e l i f var iable number==3:
datase t=s h i g h r e s . drop ([’u ’ , ’ v ’ , ’ a b s o l u t e h e i gh t ’] , a x i s=1)

e l i f var iable number==2:
datase t=s h i g h r e s . drop ([’u ’ , ’ v ’ , ’ a b s o l u t e h e i gh t ’ , ’ s td ’] , a x i s=1)

data = datase t . i l o c [36864∗ (i −1):36864∗(j −1) , : var iable number]
l a b e l s = datase t . i l o c [36864∗ (i −1):36864∗(j −1) , var iable number+label number]
h igh 2d = TSNE(pe rp l e x i t y=ply , l e a r n i n g r a t e=l r) . f i t t r a n s f o rm (data)

t sne data = np . vstack ((high 2d .T, l a b e l s)) .T
t s n e d f = pd . DataFrame (data=tsne data , columns=(”Dim 1” , ”Dim 2” , ” l a b e l s ”))
l i s t 1 = l a b e l s . unique ()
l i s t 1 . s o r t ()
sns . s e t p a l e t t e (”Paired ”)

sns . FacetGrid (t sne d f , hue=” l a b e l s ” , hue order = l i s t 1 , s i z e =10).map(p l t . s c a t t e r , ’Dim 1 ’ , ’Dim 2 ’) . add legend ()
s t da t e = int (np . f l o o r ((i −1)/24))+1
s t t ime = (i −1)%24
ed date = int (np . f l o o r ((j −1)/24))+1
ed t ime = (j −1)%24
p l t . t i t l e (f ’ 01−{ s t da t e } { s t t ime } : 00 to 01−{ ed date } { ed t ime } : 00 (ply={ply } , l r={ l r } ,{ var iable number }v , v e r s i on 1) ’ , f o n t s i z e =20)
p l t . show ()

High Resolution Wind Flow Patterns 21

#p l t . s a v e f i g (f ’01{ s t d a t e } { s t t ime } 01 { ed da te } { ed t ime } l r { l r } { var iab l e number } v l a b e l { l abe l number } . png ’)

s e l e c t t s n e 2 d (6 ,378 ,379 ,50 ,500 ,0)
s e l e c t t s n e 2 d (5 ,378 ,379 ,50 ,500 ,0)
s e l e c t t s n e 2 d (4 ,378 ,379 ,50 ,500 ,0)
s e l e c t t s n e 2 d (5 ,378 ,402 ,50 ,500 ,0)
s e l e c t t s n e 2 d (4 ,313 ,337 ,50 ,500 ,0)
s e l e c t t s n e 2 d (4 ,505 ,529 ,50 ,500 ,0)

Listing 1.3: Code for Question 3 - interpolation

import xarray as xr
import numpy as np
import matp lo t l i b . pyplot as p l t
s p h i g h r e s = xr . open dataset (’ / data samples / pe rd i gao h i gh r e s 1H 2020 01 . nc ’)
s p l ow r e s = xr . open dataset (’ / data samples / pe rd igao l ow re s 1H 2020 01 . nc ’)
d f l ow=sp l ow r e s . to data f rame ()
d f low . f i l l n a (d f low .mean () , i np l a c e=True)
d f low=df low . drop ([’ he ight ’] , a x i s=1)

d f h i gh=sp h i gh r e s . to data f rame ()
d f h i gh . f i l l n a (d f h i gh .mean () , i np l a c e=True)
d f h i gh=d f h i gh . drop ([’ he ight ’] , a x i s=1)
order = d f h i gh . columns
d f low=df low [order]

#low−re s
v e l f i r s t 1 d l ow=np . array (d f low . i l o c [: 9 2 1 6] . i l o c [: , 2]) #change l a s t number f o r
v e l f i r s t 1 d h i g h=np . array (d f h i gh . i l o c [: 3 6 8 6 4] . i l o c [: , 2])
v e l f i r s t 2 d l ow=np . reshape (v e l f i r s t 1 d l ow , (9 6 , 9 6))
v e l f i r s t 2 d h i g h=np . reshape (v e l f i r s t 1 d h i g h , (1 92 , 1 92))

import cv2
import math
from skimage . met r i c s import s t r u c t u r a l s im i l a r i t y as ssim
def upsca l i ng cv2 (low res , h i gh re s , method , var iab le name) :

s c a l e p e r c e n t = 2 # percent o f o r i g i n a l s i z e
he ight = int (l ow r e s . shape [0] ∗ s c a l e p e r c e n t)
width = int (l ow r e s . shape [1] ∗ s c a l e p e r c e n t)
dim = (width , he ight)
r e s i z e d = cv2 . r e s i z e (low res , dim , i n t e r p o l a t i o n = method)

p l t . subp lot (1 , 2 , 1)
p l t . imshow (r e s i z e d)
p l t . t i t l e (f ” upsca led ’{ var iab le name } ’ ”)
p l t . subp lot (1 , 2 , 2)
p l t . imshow (h i gh r e s)
p l t . t i t l e (f ”high−r e s o l u t i o n ’{ var iab le name } ’ ”)
p l t . s u p t i t l e (f ” cv2 {method}”)
p l t . show ()

22 Yuqiao Zhao et al.

PSNR
max1 = np .max(h i gh r e s)
MSE1 sqrt = np . sq r t (np .mean(np . power (r e s i z ed−h igh re s , 2)))
psnr = 20 ∗ math . log10 (max1/MSE1 sqrt)
print (f ”PSNR = {psnr }”)

#SSIM
SSIM = ssim (r e s i z ed , h i gh r e s)
print (f ”SSIM = {SSIM}”)
ups ca l i ng cv2 (v e l f i r s t 2 d l ow , v e l f i r s t 2 d h i g h , cv2 . INTER NEAREST, ” ve l ”)
ups ca l i ng cv2 (v e l f i r s t 2 d l ow , v e l f i r s t 2 d h i g h , cv2 . INTER LINEAR

, ” ve l ”)
ups ca l i ng cv2 (v e l f i r s t 2 d l ow , v e l f i r s t 2 d h i g h , cv2 . INTER CUBIC , ” ve l ”)

