Data Challenge 6

Image super-resolution

Background

Task

Dataset

- SMCEFR (SMC's Earth Full Resolution)
- Data from the Ocean Land and Color Instrument (OLCI) on the Sentinel-3 project
- Mainly contain clouds, lands and sea
- 1024 x 1024 PNG images

Dataset

A sample of 18 images from the smcefr-mini dataset

Image noise and degradation

Gaussian noise

- > Values that the noise can take are Gaussian-distributed
- Sensor noise caused by:
 - Poor illumination
 - ► High temperature
 - ► Transmission

Gaussian blur

- Blurring an image by a Gaussian function
- Like viewing the image through a translucent screen
- Commonly used when reducing the size of an image

Jpg compression

Commonly used method of lossy compression for digital images

> Typically achieves compression with little perceptible loss in image quality

Method

Prepare datasets

Degradation

Noise adding

- ▶ sigma = 0.1
- Basic flow:
 - noise = np.random.normal(0.0, sigma)
 - Noisy_image = image + noise

Models

OpenCV

- Non-local Means Denoising algorithm
- cv.fastNlMeansDenoisingColored()
- ► The same pattern may be somewhere else in the image
- Using that to average out the noise

USRNet

K. Zhang, L. V. Gool, and R. Timofte, "Deep unfolding network for image super-resolution," in CVPR, 2020, pp. 3214-3223.

- Input:
 - ► LR image
 - Estimated Kernel
 - Estimated Noise Level
 - Scale factor

DASR

S. Y. Kim, H. Sim, and M. Kim, "Koalanet: Blind super-resolution using kernel-oriented adaptive local adjustment," in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), June 2021, pp. 10611-10620.

- Input LR image Only
- Also training the degradation estimation

Performance measure

- Peak signal-to-noise ratio (PSNR)
 - Range from 0 to inf
 - ► Higher means less noise

- Structural similarity (SSIM)
 - Range from 0 to 1
 - ► Higher means more similar

Results

Estimated images -Bicubic resize

Estimated images -OpenCV denoising

Estimated images -USRNet

Estimated images - DASR

Performance

	Average result
bicubic	PSNR: 21.60dB SSIM: 0.4296
OpenCV	PSNR: 21.89dB SSIM: 0.7557
DASR	PSNR: 20.50dB SSIM: 0.3417
USRNet	PSNR: 22.53dB SSIM: 0.7790

Performance

Time cost

	Time cost for processing 16 images
bicubic	1 sec
OpenCV	7 sec
DASR	11 sec
USRNet	30 sec

Time cost

Time cost(sec)

Discussion

Model generalization

Specific dataset vs general dataset

 \blacktriangleright Cloud image is similar \rightarrow specific dataset

Degradation type is similar

Computational Power

Time vs performance trade-off

► Time ↑ Performance ↑

Some environment need fast/less computation

- Portable device
- Instant result

The End