EXTENDING MAGMA PORTABILITY

Final Presentation

Anna Fortenberry, UNT UTK RECSEM REU 2022

Mentors: Dr. Stan Tomov, UTK and Dr. Kwai Wong, UTK

CONTENTS

- Problem Overview
- Software and Hardware
- Methodology
- CUDA to DPC++ Translation
- Porting MAGMA SGEMM
- Hardware Usage
- Performance
- Conclusion

PROBLEM OVERVIEW

SIGNIFICANCE OF SUPERCOMPUTING

Supercomputers provide the computational power necessary to resolve problems in a vast number of important domains

[1], [2], [3]

EVOLUTION OF SUPERCOMPUTER SYSTEM DESIGN

- NVIDIA opened a new door for supercomputing (SC) capabilities with the invention of the GPU in 1999
- NVIDIA Tesla K20X GPU powered the first successful hybrid SC system in 2012
- SC Systems are continually increasing in diversity

TOP500 The List							
JUNE 2022	CPU/ Accelerator	JUNE 2019	CPU/ Accelerator				
Frontier	AMD, AMD	MD Summit IBM, NVIDI					
S.C. Fugaku	Fugaku	Sierra	IBM, NVIDIA				
LUMI	AMD, AMD	Sunway TaihuLight	Sunway				
Summit	IBM, NVIDIA	Tianhe-2A	Intel				
Sierra	IBM, NVIDIA	Frontera	Intel				
Sunway TaihuLight	Sunway	Piz Daint	Intel, NVIDIA				
Perlmutter	Perlmutter AMD, NVIDIA		Intel				
Selene	AMD, NVIDIA	ABCI	Intel, NVIDIA				
Tianhe-2A	Intel, NUDT	SuperMUC-NG	Intel				
Adastra	AMD, AMD	Lassen	IBM, NVIDIA				

FIRST INTEL GPU POWERED SUPERCOMPUTER

Anticipated for release in late 2022, Intel hopes to enter the supercomputer GPU vendor domain by powering the Aurora supercomputer at Argonne National Laboratory

INTEL ONEAPI

- Intel recently released a new programming model called **oneAPI**
- Applications that take advantage of oneAPI gain portability to all supported hardware platforms
 - CPUs (Scalar Architecture)
 - GPUs (Vector Architecture)
 - FPGAs (Spatial Architecture)
 - Other Accelerators (Matrix Architecture)

- Designed originally to run on NVIDIA GPUs
- Extended to support AMD GPUs

oneAPI includes tools for adopting the model
 Data Parallel C++ (DPC++) Translation Tool (DPCT)
 oneAPI Math Kernel Library (oneMKL)

RESEARCH QUESTIONS

- How well does the DPCT tool translate CUDA code to DPC++ code?
- What are the common translation errors?
- Can this tool be used to translate MAGMA?
- Is DPC++ portable to Nvidia and AMD GPUs, and multicore CPUs?
- What is the performance of DPC++ on each of these accelerators comparative to CUDA?

2

SOFTWARE AND HARDWARE

OPTIMIZED MIDDLEWARE & FRAMEWORKS

DIRECT PROGRAMMING Data Parallel C++ (DPC++) API-BASED PROGRAMMING oneAPI Libraries Analysis & Debug Tools

 SCALAR
 VECTOR
 MATRIX
 SPATIAL

DPC++ is a oneAPI implementation of the Khronos standard **SYCL** SYCL is an accelerator language that allows <u>code reuse across</u> hardware targets SYCL adds data parallelism and heterogeneous programming to standard ISO C++

SOFTWARE OVERVIEW

DPC++ Compatibility Tool (DPCT)

oneAPI tool to assist with migrating CUDA code to DPC++ code; translates with high accuracy

oneAPI Math Kernel (oneMKL)

set of math routines for use in high performance computing on a variety of computational devices

Compute Unified Device Architecture (CUDA)

NVIDIA parallel computing platform for harnessing power of GPUs

DPC++-LLVM (CLang-LLVM)

LLVM-based compiler project that supports SYCL language

DPC++ LLVM NVIDIA*

CLANG-LLVM build on Linux with CUDA NVIDIA support; allows DPC++ to port to NVIDIA GPUs

Intel DevCloud

Remote development environments that grant access to Intel hardware for testing oneAPI projects^{*}

[12], [13], [14], [15], [20]

	CENTRAL PROCESSING UNITS									
\bigcirc	AMD EPYC 774 PROCESSOR	2	INTEL® XEON® PROCESSOR E	5-2698 V4						
	Cores: Base Clock: # of Threads: Cache:	64 2.25 Ghz 128 256 MB	Cores: Base Clock: # of Threads: Cache:	20 2.20 Ghz 40 50 MB						

192 350 MHz Memory Size: Shared System

METHODOLOGY

Translate different structures of CUDA files to DPC++ with DPCT for correctness Configure system to run DPC++ code on Nvidia GPU Set up directory with MAGMA CUDA sgemm and dependencies Test and compare performance of sgemm on available hardware

CUDA TO DPC++ TRANSLATION

4

SIMPLE KERNEL TRANSLATION

```
__global__ void VectorAddKernel(float* A, float* B, float* C)
```

```
A[threadIdx.x] = threadIdx.x + 1.0f;
B[threadIdx.x] = threadIdx.x + 1.0f;
C[threadIdx.x] = A[threadIdx.x] + B[threadIdx.x];
```

```
}
```

}

```
void VectorAddKernel(float* A, float* B, float* C, sycl::nd_item<3> item_ct1)
```

```
A[item_ct1.get_local_id(2)] = item_ct1.get_local_id(2) + 1.0f;
B[item_ct1.get_local_id(2)] = item_ct1.get_local_id(2) + 1.0f;
C[item_ct1.get_local_id(2)] =
A[item_ct1.get_local_id(2)] + B[item_ct1.get_local_id(2)];
```

TEST 1: ISOLATED FILE

- Translated files for CUDA vector addition and vector-matrix multiplication
- 100% compilation and execution accuracy
- CUDA error handling dead code clean up for file readability

/* DPCT1003:30: Migrated API does not return error code. (*, 0) is inserted.
You may need to rewrite this code. */

-> h_C = (float *)sycl::malloc_host(mem_size_C,dpct::get_default_queue());

TEST 2: FILE WITH HEADERS

- Matrix-matrix multiplication file with six included headers
- 98.7% compilation accuracy and 98.0% execution accuracy in the main file
- 10% of the code needed dead code touchups
- Header files had 100% compilation accuracy and execution accuracies ranging from 75%-100%

cudaGetDeviceCount(&device count); device count = dpct::dev mgr::instance().device count() while (current device < device count) while (current device < device count) cudaGetDeviceProperties dpct::dev mgr::instance() (&deviceProp, current device); .get device (current device) .get device info(deviceProp); if (deviceProp.computeMode != if (true) cudaComputeModeProhibited) else { else { devices prohibited++; devices prohibited++; current device++; current device++;

PORTING MAGMA SGEMM

- Implementation is templated with 9 parameters
- Computation is done with thread blocks of size
 [DIM_X , DIM_Y]
 - Thread t_{ij} computes [DIM_M / DIM_X, DIM_N / DIM_Y] elements of C₁₁
- A_{IK} gets loaded in shared memory by [DIM_XA , DIM_YA] threads
- B_{KJ} gets loaded in shared memory by [DIM_XB , DIM_YB] threads
- C_{IJ} is held and computed in **registers**

- Collected MAGMA SGEMM CUDA code and dependencies in one directory
- Used DPCT to recursively migrate CUDA code to DPC++
- Translated header files that did not migrate independently in a separate directory and then copied them into the MAGMA SGEMM directory
- Implemented compiler directives as needed

HARDWARE USAGE

MULTICORE CPUS

user1@REU1901-HP-Z800-Workstation: ~/anna/mtxMtxMulCnvt/one/dp...

user1@REU1901-HP-Z800-Workstation: ~/anna/mtxMtxMulCnvt/one/dp...

19 user1	20	0 13,1G 162	28M 267M R 9	98.8 3.4	1h18:47 ./intelCpuExec	-wA=8192	-wB=8192	-hA=8192	-hB=81
34 user1	20	0 13,1G 162	28M 267M R 9	98.8 3.4	1h19:03 ./intelCpuExec	-wA=8192	-wB=8192	-hA=8192	-hB=81
18 user1	20	0 13.1G 162	28M 267M R 9	96.2 3.4	1h18:50 ./intelCpuExec	-wA=8192	-wB=8192	-hA=8192	-hB=81
16 user1	20	0 13.1G 162	28M 267M R 9	97.5 3.4	1h18:09 ./intelCpuExec	-wA=8192	-wB=8192	-hA=8192	-hB=81
25 user1	20	0 13.1G 162	28M 267M R 9	99.4 3.4	1h18:23 ./intelCpuExec	-wA=8192	-wB=8192	-hA=8192	-hB=81
25 user1	20	0 11708 51	128 3220 R	2.6 0.0	0:16.55 htop				

Intel(R) Xeon(R) CPU X5650 @ 2.67GHz

MULTICORE CPUS

27 [100.0%]	91 [100.0%]	155[100.0%]	219[100.0%]
28 [100.0%]	92 [100.0%]	156[100.0%]	220[100.0%]
29 [100.0%]	93 [100.0%]	157[100.0%]	221 100.0%
30 [100.0%]	94 [100.0%]	158[100.0%]	222[100.0%]
31 [100.0%]	95 [100.0%]	159[100.0%]	223[100.0%]
32 [100.0%]	96 [100.0%]	160[100.0%]	224[100.0%]
33 [100.0%]	97 [100.0%]	161[100.0%]	225[100.0%]
34 [100.0%]	98 [100.0%]	162[100.0%]	226[100.0%]
35 [100.0%]	99 [100.0%]	163[100.0%]	227[100.0%]
36 [100.0%]	100[100.0%]	164[100.0%]	228[100.0%]
37 [100.0%]	101[100.0%]	165[100.0%]	229[100.0%]
38 [100.0%]	102[100.0%]	166[100.0%]	230[100.0%]
39 [100.0%]	103[100.0%]	167[100.0%]	231[100.0%]
40 [100.0%]	104[100.0%]	168[100.0%]	232[100.0%]
41 [100.0%]	105[100.0%]	169[100.0%]	233 100.0%
42 [100.0%]	106[100.0%]	170[100.0%]	234[100.0%]
43 [100.0%]	107[100.0%]	171[100.0%]	235[100.0%]
44 [100.0%]	108[100.0%]	172[100.0%]	236 100.0%
45 [100.0%]	109[100.0%]	173[100.0%]	237[100.0%]
46 [100.0%]	110[100.0%]	174[100.0%]	238[100.0%]
47 [100.0%]	111[100.0%]	175[100.0%]	239 100.0%
48 [100.0%]	112[100.0%]	176 100.0%	240 100.0%
49 [100.0%]	113[100.0%]	177[100.0%]	241[100.0%]

AMD EPYC 7742 64-Core Processor

Every 0.5s: nvidia-smi REU1901-HP-Z800-Workstation: Fri Jul 8 10:16:58 2022 Fri Jul 8 10:16:58 2022 NVIDIA-SMI 470.129.06 Driver Version: 470.129.06 CUDA Version: 11.4 GPU Name Persistence-M| Bus-Id Disp.A Volatile Uncorr. ECC GPU-Util Compute M. Fan Temp Perf Pwr:Usage/Cap| Memory-Usage MIG M. ______ 0 NVIDIA GeForce ... Off | 00000000:0F:00.0 On N/A 35% 63C P3 <u>60W / 100W | 1345MiB / 3909MiB</u> 100% Default N/A Processes: GPU GI CI PID GPU Memory Type Process name ID ID Usage N/A N/A /usr/lib/xorg/Xorg 1239 G 23MiB 0 N/A N/A G /usr/lib/xorg/Xorg 241MiB 0 240692 N/A N/A 240820 /usr/bin/gnome-shell 25MiB 0 G N/A N/A 258953 G ...RendererForSitePerProcess 13MiB 0 0 N/A N/A 3368334 G /usr/lib/firefox/firefox 111MiB ffice/program/soffice him 0 N/A N/A 3634687 47MiR C ./cudaGpuExec N/A N/A 3643058 862MiB 0 C

NVIDIA GeForce GTX 1650

TEST PARAMETERS

cuda = -DMAGMA_TUNING -DDIM X=16 -DDIM Y=16 -DBLK M nn=96 -DBLK_N_nn=96 -DBLK_K_nn=16 -DDIM XA=32 -DDIM_YA=8 -DDIM XB=8 -DDIM_YB=32

BKI 16 C = A Btemplate < 16, 16, 96, 96, 16, 32, 8, 8, 32> В For I = 1 .. M step 16 For J = 1 .. N step 16 For K = 1 .. K step 16 96 $C_{II} += A_{IK} B_{KI}$ Δ **16** 96 A

- Thread t_{ij} computes [96 / 16 , 96 / 16] elements of C_{IJ}
- AIK gets loaded in shared memory by [32, 8] threads
- B_{KJ} gets loaded in shared memory by [8, 32] threads
- C_{IJ} is held and computed in registers

AMD EPYC 7742 64-CORE PROCESSOR @ 2.25GHZ

INTEL® XEON® CPU E5-2698 V4 20-CORE PROCESSOR @ 2.20GHZ

NVIDIA GEFORCE RTX 3060

ADDITIONAL TEST PARAMETERS

	DIM_X	DIM_Y	DIM_M	DIM_N	DIM_K	DIM_XA	DIM_YA	DIM_XB	DIM_YB
cuda	16	16	96	96	16	32	8	8	32
ker2	16	16	64	64	8	32	8	8	32
ker11	12	4	48	48	2	24	2	24	2

INTEL UHD GRAPHICS P630 [0x3e96]

38

- oneAPI is a promising approach for parallel programming across various architectures
- DPCT tool can be used successfully for an initial port of CUDA code to DPC++
- Large numerical libraries like MAGMA, originally written in CUDA to support Nvidia GPUs, can be easily translated to DPC++ to provide functional portability to different vendor GPUs, as well as multicore CPUs

- Initial migrated code tuned for Nvidia GPUs performs well on multicore CPUs
- Initial migrated code tuned for Nvidia GPUs retains performance on Nvidia GPUs
- Initial migrated code tuned for Nvidia GPUs performs poorly on the available Intel GPU
 - Tuning is required, but optimal parameters are difficult to find without further knowledge on the hardware design

ONGOING AND FUTURE WORKS

- Full translation of MAGMA
- ICL account configuration
- Finding near optimal parameters for the Intel integrated GPU
- Testing migrated code on discrete Intel GPU upon release

This research was conducted at the University of Tennessee at Knoxville through the RECSEM REU.

- [1] Advancing computing and data capabilities for scientific discovery and continued U.S. technological leadership. Oak Ridge National Lab. <u>https://www.ornl.gov/directorate/ccsd</u>
- [2] <u>https://thenounproject.com/search/icons/?iconspage=1&g=guantum</u>
- [3] *Computing at LLNL.* Lawrence Livermore National Laboratory. <u>https://computing.llnl.gov/</u>
- [4] NVIDIA HISTORY. Nvidia. https://www.nvidia.com/en-us/about-nvidia/corporate-timeline/
- [5] *New Titan Supercomputer Named Fastest in the World.* Department of Energy.

https://www.energy.gov/articles/new-titan-supercomputer-named-fastest-w orld-0

- [6] June 2019. The Top 500 List. <u>https://www.top500.org/lists/top500/2019/06/</u>
- [7] June 2022. The Top 500 List. https://www.top500.org/lists/top500/2022/06/

- [8] Aurora: HPC and AI at Exascale. Intel. https://www.intel.com/content/www/us/en/high-performance-computing/ supercomputing/exascale-computing.html
- [9] Compare Benefits of CPUs, GPUs, and FPGAs for Different oneAPI Compute Workloads. Intel. <u>https://www.intel.com/content/www/us/en/developer/articles/technical/c</u>

omparing-cpus-gpus-and-fpgas-for-oneapi.html#gs.83gstn

- [10] Intel oneAPI Programming Overview. Intel. <u>https://www.intel.com/content/www/us/en/develop/documentation/onea</u> <u>pi-programming-guide/top/introduction-to-oneapi-programming/intel-on</u> <u>eapi-programming-overview.html</u>
- [11] Data Parallel C++: the oneAPI Implementation of SYCL*. Intel. https://www.intel.com/content/www/us/en/developer/tools/oneapi/dataparallel-c-plus-plus.html#gs.83xmmg

REFERENCES Intel[®] DPC++ Compatibility Tool. Intel. [12] https://www.intel.com/content/www/us/en/developer/tools/oneapi/dpc-c ompatibility-tool.html#qs.83zp77 oneMKL. Intel. [13] https://spec.oneapi.io/versions/latest/elements/oneMKL/source/index.ht m What Is CUDA? NVIDIA. [14] https://blogs.nvidia.com/blog/2012/09/10/what-is-cuda-2/ *Compiling SYCL* for Different GPUs.* Intel. [15]

https://www.intel.com/content/www/us/en/developer/articles/technical/c ompiling-sycl-with-different-gpus.html

[16] AMD EPYC[™] 7742. AMD. https://www.amd.com/en/products/cpu/amd-epyc-7742

- [17] Intel® Xeon® Processor E5-2698 v4. Intel. https://ark.intel.com/content/www/us/en/ark/products/91753/intel-xeonprocessor-e52698-v4-50m-cache-2-20-ghz.html
- [18] GEFORCE RTX 3060 FAMILY. Nvidia. https://www.nvidia.com/en-us/geforce/graphics-cards/30-series/rtx-3060 -3060ti/
- [19] Intel UHD Graphics P630. TechPowerUp. https://www.techpowerup.com/gpu-specs/uhd-graphics-p630.c3676
- [20] Intel® DevCloud. Intel. Intel® DevCloud

Presentation Template:

Catalina, J. (n.d.). Minimal business. Free PowerPoint Template & Google Slides theme. SlidesCarnival. Retrieved July 5, 2022, from <u>https://www.slidescarnival.com/eleanor-free-presentation-template/308#p</u> <u>review</u>