
PyMAGMA: A Python Library for
MAGMA

Delario Nance, Jr. (Davidson College)

Mentors: Stanimire Tomov (UTK) and Kwai Wong (UTK)

Research Assistant: Julian Halloy (UTK)

Presentation Outline

1) Background

2) SWIG Workflow

3) Creating PyMAGMA

4) Extending PyMAGMA

5) Performing SGEMM with PyMAGMA

6) Conclusion and Future Work

Background

What is MAGMA?
➢ Stands for “Matrix Algebra on GPU and

Multicore Architectures”

➢ A large package of C++ functions optimized

for running linear algebra operations on

GPUs

○ LAPACK and NumPy are linear algebra

packages whose code only runs on CPUs

GPU Model: NVIDIA GeForce GTX 1650 SUPER

CPU Model: Intel(R) Xeon(R) CPU X5650

Comparing the times taken by LAPACK, MAGMA,

and NumPy to perform SGEMM (C = -AB + C)

C++ vs. Python
C++

● Code is ran very quickly

● Syntax can be difficult for new programmers

to understand

Python

● Code is ran relatively slowly

● Syntax is often easy to understand

Printing “Hello REU” in C++ Printing “Hello REU” in Python

What is SWIG?
➢ Stands for “Simplified Wrapper and Interface

Generator”

➢ A tool for interfacing C/C++ code with

high-level programming languages (e.g.,

Python)

➢ Works by generating three files

○ Wrapper file - translates C/C++ functions to

the target language

○ Shared library - contains the original C/C++

functions and wrapper code

○ Import file - lets users import the shared

library into the target language

Python Interpreter
(English speaker)

Wrapper
(Translator)

C/C++ Functions
(Spanish speech)

A real-life analogy of SWIG’s wrapper code

SWIG Workflow

Compiled
Wrapper

File

Wrapper
File

Header File

Import
File

Shared
Library

Interface
File

C Object
Code

SWIG Flowchart

File 1: Header File (.h)
➢ First, the user must choose which C functions to interface with Python

➢ Each of the C functions should be declared in a file known as the “header file”

➢ By editing the header file, the user can easily extend the Python interface

Sample C functions to interface Header file for the chosen C functions

Header
File

File 2: Interface File (.i)
➢ Must contain the name of the Python library to create (Line 1)

➢ Usually contains two “include” statements for the previously created header file

(Lines 4 and 6)

➢ Where users can insert typemaps to give SWIG directions on how to handle

specific C-to-Python type conversions

Header
File

Interface
File

Interface File for the PyMath Library

Example of a SWIG Typemap

FIle 3a: Import File (.py)
➢ The “payment” in our real-life analogy

➢ Lets users import the library of C code into Python after it is created (Line 15)

➢ Contains a Python function for each C function which was declared in the header

file (Lines 65-72)

Interface
File

Import
File

The Python import command

for importing the Python library

The Python functions which users

will call to use the C functions

FIle 3b: Wrapper File (_wrap.c)
➢ The “translator” in our real-life analogy

➢ Contains the “wrapper” code which will translate our chosen C functions to the

Python interpreter

➢ Incorporates any typemaps which the user enforced in the interface file (.i)

Interface
File

Wrapper
File

Wrapper code for the my_fact() function

File 4: Shared Library (.so)
➢ The library of C functions which users will import into Python

➢ Contains the compiled wrapper code and object code for the C functions

Compiled
Wrapper

File

Shared
Library

C Object
Code

Using the PyMath library in Python

Creating PyMAGMA

Header File (pymagma.h)
➢ Contained typedefs and declarations for the MAGMA functions which we wanted

to use in Python

➢ Previous Errors

○ ‘Magma_trans_t was not declared in this scope’

Header
File

Example C++ declarations from MAGMA

Example Typedefs for MAGMA Functions

Interface File (pymagma.i)
➢ Where we specified the name of the

library we were creating (PyMAGMA)

➢ Contains two include statements for

the pymagma.h header file

Header
File

Interface
File

Import File (pymagma.py)
➢ Contained the Python statement for importing the PyMAGMA library into

Python once it was built (Line 15)

➢ Included Python functions for calling the C++ code from MAGMA (Lines 73-80)

➢ Created with the command swig -DSWIG_NO_CPLUSPLUS_CAST -c++ -python pymagma.i

Interface
File

Import
File

The Python import statements

Python functions which call MAGMA functions

in the PyMAGMA library

Wrapper File (pymagma_wrap.cxx)
➢ Contained the wrapper code for translating the MAGMA functions to the Python

interpreter

➢ Created with the command swig -DSWIG_NO_CPLUSPLUS_CAST -c++ -python pymagma.i

➢ Previous errors

○ reinterpret_cast from type ‘const void**’...

Interface
File

Wrapper
File

Compilation Error

Wrapper Code Source of Error

➢ Created with the command ld -shared /home/user1/magma/lib/libmagma.so

pymagma_wrap.o -o _pymagma.so

Shared Library (_pymagma.so)

Using three MAGMA functions in Python with PyMAGMA

Compiled
Wrapper

File

Shared
Library

C Object
Code

Extending PyMAGMA

Pointer Error
➢ Many C++ functions in MAGMA require pointer types as arguments, but Python

users cannot normally create pointers in Python!

➢ How do we resolve this pointer error???

Trying to call the magma_malloc(), which expects a pointer

argument, through PyMAGMA

We create new “pointerless” functions in
PyMAGMA which call their “pointer” counterparts!

pymagma_malloc_cpu()
➢ Purpose

○ Dynamically allocates a user-specified number of bytes for a block of CPU memory

➢ Returns

○ The base address of the allocated block of CPU memory

The definition for pymagma_malloc_cpu()

Base
Address

824

Address
826

Address
827

Address
828

Address
825

Additional Added Functions:

● pymagma_malloc()

● pymagma_free()

● pymagma_malloc_pinned()

● pymagma_free_pinned()

● pymagma_queue_create()

● pymagma_queue_destroy()

● pymagma_queue_sync()

pymagma_sarray_cpu()
Purpose:

● Creates a matrix of floats by dynamically allocating a height x width block of

memory for floats on the CPU

Returns:

● The base address of the allocated block of memory

The definition for pymagma_sarray_cpu()

0 0 0 0
0 0 0 0
0 0 0 0

pymagma_sset_cpu()
Purpose:

● Changes the value at a given position in a matrix of floats on the CPU

Returns:

● N/A

The definition for pymagma_sset_cpu()

0 0 0 0
0 0 0 0
0 0 0 0

0 0 0 0
0 0 2 0
0 0 0 0

pymagma_sprint_cpu()
Purpose:

● Prints an array of floats stored on the CPU

Returns:

● N/A

The definition for pymagma_sprint_cpu()

0 0 0 0
0 0 2 0
0 0 0 0

Performing SGEMM with PyMAGMA

SGEMM Performance (C = -AB + C)
Takeaways:

➢ PyMAGMA performs SGEMM with a similar time and speed to MAGMA

➢ Like MAGMA, PyMAGMA performs faster than LAPACK and NumPy

Conclusion and Future Work
Conclusion

❖ We successfully used SWIG to build

PyMAGMA, an interface through which

currently ~34 functions in MAGMA can be

used with Python

❖ We learned that PyMAGMA can perform

SGEMM with similar speeds to MAGMA

❖ We learned that we can easily add functions

to PyMAGMA by adding their

declaration/definition to pymagma.h

Future Work

❖ Research how SWIG typemaps can

be used to direct SWIG in how to

wrap pointer arguments

❖ Research how to use SWIG with

foreign data types (e.g., NumPy

arrays)

Acknowledgments and References
Acknowledgments

● National Science Foundation

(NSF)

● Innovative Computing Laboratory

(ICL)

● National Institute of

Computational Sciences (NICS)

References

● Stanimire Tomov, Jack Dongarra, Marc Baboulin,

“Towards dense linear algebra for hybrid GPU

accelerated manycore systems,” Parallel Computing,

Volume 36, Issues 5-6, 2010, Pages 232-240, ISSN

0167-8191

● LAPACK - Linear Algebra PACKage (2022, April 12).

Retrieved from https://netlib.org/lapack/.

● PEP 8 — the Style Guide for Python Code. Retrieved

from https://pep8.org/

● PyTorch. Retrieved from https://pytorch.org/.

● SWIG-4.0 Documentation [PDF file]. Retrieved from

https://swig.org/Doc4.0/SWIGDocumentation.pdf.

● Welcome to SWIG. (2019, April 18). Retrieved from

https://swig.org/.

https://netlib.org/lapack/
https://pep8.org/
https://pytorch.org/
https://swig.org/Doc4.0/SWIGDocumentation.pdf
https://swig.org/

